期刊文献+

随机规划经验逼近最优解集序列的几乎处处上半收敛性 被引量:4

The Almost Everywhere Upper Semiconvergence of the Optimal Solution Set Sequence of Empirical Approximations for Stochastic Programs
下载PDF
导出
摘要 本文对随机规划经验逼近最优解集的几乎处处上半收敛性进行了研究。首先通过经验概率测度替代初始规划的概率测度得到随机规划的经验逼近模型,然后将带有约束的随机规划问题转化成与其等价的无约束的随机规划问题,最后利用上图收敛性理论,给出了随机规划经验逼近最优解集的几乎处处上半收敛性。本文采用的经验逼近方法可应用于研究随机规划统计估计问题的一致相合性、稳健性、极大似然估计的强相合性。 This paper discussed almost everywhere upper semiconvergence of optimal solution set of empirical approximations for stochastic programs. Firstly, an empirical approximation model of stochastic programming is obtained by replacing the probability measure of original program with empirical probability measure. Sequentially, the constrained stochastic programming is transformed into an equivalent unconstrained stochastic programming. Finally, using the epi-convergence theory, the almost everywhere upper semiconvergence of optimal solution set of empirical approximations for stochastic programming is obtained. The empirical approximation methods can be applied to study uniform consistency, robustness, strong consistency of the maximum likelihood estimator of statistical estimators.
出处 《工程数学学报》 CSCD 北大核心 2007年第4期701-706,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60574075) 陕西省教育厅专项基金(06JK150号)
关键词 随机规划 经验逼近 最优解集 正则条件 几乎处处上半收敛 stochastic programming empirical approximations optimal solution set regularity condition almost everywhere upper semiconvergence
  • 相关文献

参考文献9

  • 1Salinetti G.Consistency of statistical estimators:the epigraphical view[C]//S.Uryasev and P M.Pardalos.ed.Stochastic Optimization:Algorithms and Applications.Dordrecht:Kluwer Academic Publishers,2001:365-383
  • 2Dupacova J,Wets R J-B.Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J].The Annals of Statistics,1988,16(4):1517-1549
  • 3Artstein Z,Wets R J-B.Consistency of minimizers and the SLLN for stochastic programs[J].Journal Convex Analysis,1995,2(1):1-17
  • 4Hess C.Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator[J].The Annals of Statistics,1996,24(3):1298-1315
  • 5Robinson S M.Analysis of sample-path optimization[J].Mathematics of Operations Research,1996,21(3):513-528
  • 6Zervos M.On the epiconvergence of stochastic optimization problems[J].Mathematics of Operations Research,1999,24(2):495-508
  • 7霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 8Kall P.Approximation to optimization problems:an elementary review[J].Mathematics of Operations Research,1986,11(1):9-18
  • 9王金德.关于上图收敛性理论的一些结果.高校应用数学学报,1988,3(4):520-526.

二级参考文献3

共引文献16

同被引文献22

  • 1霍永亮,刘三阳,于力.随机规划ε-逼近最优解集的Hausdorff收敛性[J].应用数学,2006,19(4):852-856. 被引量:1
  • 2Salinetti G. Consistency of statistical estimators: the epigraphical view. Stochastic Optimization :Algorithms and Applications, Uryasev S,Pardalos P M. Dordrecht: Kluwer Academic Publishers, 2001: 365--383.
  • 3Dupacova J,Wets R J - B. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems. The Annals of Statistics, 1988 ; 16 ( 4 ) : 1517-1549.
  • 4Artstein Z,Wets R J - B. Consistency of minimizers and the SLLN for stochastic programs. Journal Convex Analysis, 1995 ;2( 1 ) :1--17.
  • 5Hess C. Epi-convergenee of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics, 1996 ;24(4) : 1298--1315.
  • 6霍永亮.菲线性随机规划的稳定性理论研究.西安:西安电子科技大学博士学位论文,2006.
  • 7Pennanen T, Koivu M. Epi-convergent discretizations of stochastic programs via integration quadratures. Numerische Mathematik, 2005;100(1) :141--163.
  • 8Salinetti G. Consistency of statistical estimators: the epigraphical view[G]//Uryasev S, Pardalos P M. Stochastic Optimization: Algorithms and Applications. Dordrecht: Kluwer Academic Publishers, 2001: 365-383.
  • 9Dupacova J, Wets R J B. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J]. The Annals of Statistics, 1988,16(4) : 1517-1549.
  • 10Artstein Z, Wets R J B. Consistency of minimizers and the SLLN for stochastic programs[J]. Journal Convex Analysis, 1995,2(1) : 1-17.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部