摘要
本文对随机规划经验逼近最优解集的几乎处处上半收敛性进行了研究。首先通过经验概率测度替代初始规划的概率测度得到随机规划的经验逼近模型,然后将带有约束的随机规划问题转化成与其等价的无约束的随机规划问题,最后利用上图收敛性理论,给出了随机规划经验逼近最优解集的几乎处处上半收敛性。本文采用的经验逼近方法可应用于研究随机规划统计估计问题的一致相合性、稳健性、极大似然估计的强相合性。
This paper discussed almost everywhere upper semiconvergence of optimal solution set of empirical approximations for stochastic programs. Firstly, an empirical approximation model of stochastic programming is obtained by replacing the probability measure of original program with empirical probability measure. Sequentially, the constrained stochastic programming is transformed into an equivalent unconstrained stochastic programming. Finally, using the epi-convergence theory, the almost everywhere upper semiconvergence of optimal solution set of empirical approximations for stochastic programming is obtained. The empirical approximation methods can be applied to study uniform consistency, robustness, strong consistency of the maximum likelihood estimator of statistical estimators.
出处
《工程数学学报》
CSCD
北大核心
2007年第4期701-706,共6页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(60574075)
陕西省教育厅专项基金(06JK150号)
关键词
随机规划
经验逼近
最优解集
正则条件
几乎处处上半收敛
stochastic programming
empirical approximations
optimal solution set
regularity condition
almost everywhere upper semiconvergence