摘要
本文引入闭区间上实值函数关于向量值函数的Henstock-Stieltjes积分,研究了Henstock- Stieltjes积分的性质,给出了Henstock-Stieltjes积分可积的充要条件,并得到了Henstock- Stieltjes积分的收敛定理,最后证明了向量值函数在闭区间上关于实值右连续函数是Pettis可积,那么必为Henstock-Stieltjes可积。
In this paper, we introduce and investigate the Henstock-Stieltjes integral for Banach-valued function with respect to a real valued function defined on closed intervals of the real line. The basic properties of the Henstock-Stieltjes integral are discussed. Some sufficent and necessary conditions for Henstock-Stieltjes integrable are given, and a convergence theorem is obtained. Finally, it is proved that a Pettis integrable function with respect to right continuous functions from a closed interval to a Banach space is Henstock-Stieltjes integrable.
出处
《工程数学学报》
CSCD
北大核心
2007年第4期719-724,共6页
Chinese Journal of Engineering Mathematics
基金
陕西省教育厅基金(05JK207)
西安工程大学(2006XG32)