期刊文献+

向量值函数的Henstock-Stieltjes积分 被引量:1

The Henstock-Stieltjes Integral of Vector-valued Functions
下载PDF
导出
摘要 本文引入闭区间上实值函数关于向量值函数的Henstock-Stieltjes积分,研究了Henstock- Stieltjes积分的性质,给出了Henstock-Stieltjes积分可积的充要条件,并得到了Henstock- Stieltjes积分的收敛定理,最后证明了向量值函数在闭区间上关于实值右连续函数是Pettis可积,那么必为Henstock-Stieltjes可积。 In this paper, we introduce and investigate the Henstock-Stieltjes integral for Banach-valued function with respect to a real valued function defined on closed intervals of the real line. The basic properties of the Henstock-Stieltjes integral are discussed. Some sufficent and necessary conditions for Henstock-Stieltjes integrable are given, and a convergence theorem is obtained. Finally, it is proved that a Pettis integrable function with respect to right continuous functions from a closed interval to a Banach space is Henstock-Stieltjes integrable.
出处 《工程数学学报》 CSCD 北大核心 2007年第4期719-724,共6页 Chinese Journal of Engineering Mathematics
基金 陕西省教育厅基金(05JK207) 西安工程大学(2006XG32)
关键词 Banach值函数 HENSTOCK-STIELTJES积分 收敛定理 PETTIS积分 Banach valued function Henstock-Stieltjes integral convergence theorem Pettis integral
  • 相关文献

参考文献1

二级参考文献9

  • 1HENSTOCK R.Theory of Integration[M].London:Buttyerworth,1963.
  • 2KURZWEIL J.Generalized ordinary differential equations and continuous dependence on aparameter[J].Czchosloual Math J,1957,(82):418-446.
  • 3LEE P Y,CHEW T S.A better convergence theorem for Henstock integrals[J].Bull London Math Soc,1985,(17):557-564.
  • 4FREMLIN D H,MENDOZA J.On the integration of vector-valued functions[J].Illinois J Math,1994,38(1):127-147.
  • 5FREMLIN D H.The henstock generalized McShane integrationof vector-valued functions[J].Illinois J Math,1995,39(1):39-67.
  • 6FREMLIN D H.The Henstock and McShane integration of vector-valued functions[J].Illinois J Math,1994,38(3):471-479.
  • 7WU Congxin,GONG Zengtai.On Henstock integrals of interval-valued functions and fuzzy-valued functions[J].Fuzzy Sets and Systems,2000,(115):377-391.
  • 8GORDON R A.The McShane integral of the Banach-valued functions[J].Illinois J Math,1990,34(3):557-567.
  • 9MCSHANE E J.A unifined theory of integration[J].Amer Math Monthly,1973,80:349-359.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部