期刊文献+

完全r部图K_r(t)的{C_3,C_(2k)}-强制分解 被引量:1

Mandatory Decompositions of Complete Multipartite Graphs into Cycles of Lengths 3 or 2k
下载PDF
导出
摘要 本文研究完全多部图的强制圈分解的存在性问题,得到了完全r部图Kr(t)的3圈和2k圈{C2,C2k}-强制分解存在时t与r的4种可能关系,特别地,给出了k=2,3时t与r满足这些关系之一为强制分解存在的充分条件。 The existence problem for a {C3,C2k}-mandatory decomposition of Kr(t) is discussed. Four relations between r and t are given which is a necessary condition for the problem. When k is 2 or 3, the necessary condition is also sufficient.
作者 骆汝九
出处 《工程数学学报》 CSCD 北大核心 2007年第4期753-756,共4页 Chinese Journal of Engineering Mathematics
关键词 完全多部图 强制分解 complete multipartite graphs mandatory decompositions cycles
  • 相关文献

参考文献7

  • 1Bondy J A,Murty U S R.Graph Theory with Applications[M].The Macmillan Press Ltd,1976
  • 2Sotteau D.Decomposition of Km,n(K*m,n)into cycles(circuits)of length 2k[J].J Combinatorial Theory (Series B),1981,30:75-81
  • 3Cavenagh N J.Decompositions of complete tripartite graphs into k-cycles[J].Australasian Journal of Combinatorics,1998,18:193-200
  • 4Billington E J.Decomposing complete tripartite graphs into cycles of length 3 and 4[J].Discrete Mathematics,1999,197/198:123-135
  • 5Cavenagh N J,Billington E J.Decompositions of complete multipartite graphs into cycles of even length[J].Graphs and Combinatorics,2000,16:49-65
  • 6Mendelsohn E,Rees R.Mandatory representation designs[J].Combinatorial Theory(Series A),1988,49:349-362
  • 7Collbourn C J,Dinitz J H.The CRC handbook of combinatorial designs[M].CRC Press,1996:203-213

同被引文献4

  • 1Bondy J A, Murty U S R. Graph Theory with Applications[M]. London: The Macmillan Press Ltd, 1976.
  • 2Mendelsohn E, Rees R, Mandatory representation designs[J]. Combinatorial Theory(Series A), 1988, 49: 349-362.
  • 3Collbourn C J, Dinitz J H. The CRC Handbook of Combinatorial Designs[M]. Boca Raton,FL: CRC Press, 1996.
  • 4Sotteau D. Decomposition of Km,n(Km,n^*) into cycles (circuits) of length 2k[J]. Combinatorial Theory (Series B),1981,30:75-81.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部