期刊文献+

血红蛋白在DHP/PAM-CdS膜修饰金电极上的直接电化学及其与利巴韦林相互作用的研究

Direct Electrochemistry of Hemoglobin Immobilized on DHP/PAM-CdS Nanoparticles Films Modified Au Electrode and Its Interaction With Ribavirin
下载PDF
导出
摘要 采用直接滴涂的方法将血红蛋白固定到双十六烷基磷酸酯(DHP)/聚丙烯酰胺包裹的硫化镉纳米粒子(PAM-CdS)膜修饰金电极的表面,通过循环伏安法研究了血红蛋白在修饰金电极上的直接电化学行为.在0.1MpH=6.0的磷酸缓冲溶液中,该修饰电极有一对氧化还原峰,其式电位为0.0405V(以饱和甘汞电极为参比电极),并且峰电位随着溶液pH值的增加而负移,其斜率为-40.1mV.pH-1,表明此反应过程是一电子一质子过程.利用此修饰电极,我们研究了血红蛋白与抗病毒药物利巴韦林间的相互作用. Direct electrochemistry of hemoglobin (Hb) immobilized on dihexadecylphosphate (DHP)/ polyacrylamide-capped cadmium sulfide nanoparticles (PAM-CdS) film modified Au electrode was investigated. The immobilized Hb displayed a pair of well-defined redox peaks with a formal potential of 0. 0405 V (versus saturated calomel electrode) in the pH 6.0 phosphate buffer solution (PBS). Peak potential was shifted linearly in the negative directional with increasing solution pH from 5.0 - 9.0 (with a slope of - 40.1 mV per pH unit). Electron transfer between Hb and Au electrode was greatly facilitated in the DHP/PAM-CdS films microenvironment. The interaction between Hb and ribavirin was investigated by electrochemical technique. The peak current is proportional to the concentration of ribavirin over the range of 2.80 × 10^-5 to 1.10 × 10^-4 mol/L, the linear regression equation was I (μA) = 3. 7797- 0. 04251c(μM) with a correlation coefficient r = 0. 9962, and the detection limit was 9.20× 10^-6mol/L (S/N= 3).
出处 《安徽师范大学学报(自然科学版)》 CAS 2007年第3期302-307,共6页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(20675002) 安徽省教育厅自然科学重点基金(2006kj040A)
关键词 血红蛋白 双十六烷基磷酸酯 硫化镉纳米粒子 利巴韦林 hemoglobin dihexadecylphosphate PAM-CdS nanoparticles ribavirin
  • 相关文献

参考文献1

二级参考文献15

  • 1Lent, C. S.; Isaksen, B.; Lieberman, M. J. Am. Chem. Soc.2003, 125, 1056.
  • 2Oosterkamp, T. H.; Fujisawa, T.; Wiel, W. G.; Ishibashi, K.;Hijman, R. V.; Tarucha, S.; Kouwenhoven, L. P. Nature 1998, 395, 873.
  • 3Sasaki, S.; Franceschi, S. D.; Elzerman, J. M.; Wiel, W. G.;Eto, M.; Tarucha, S.; Kouwenhoven, L. P. Nature 2000, 405,764.
  • 4Wu, X.-Y.; Liu, H.-J.; Liu, J.-Q.; Haley, K. N.; Treadway, J.A.; Larson, J. P.; Ge, N.-F.; Peale, F.; Bruchez, M. P. Nat.Biotechnol. 2003, 21, 41.
  • 5Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M.Nat. Biotechnol. 2003, 21, 47.
  • 6Han, M.-Y.; Gao, X.-H.; Su, J.-Z.; Nie, S.-M. Nat. Biotechnol. 2001, 19, 631.
  • 7Kaneda, Y.; Tsutsumi, Y.; Yoshioka, Y.; Kamada, H.; Yamamoto, Y.; Kodaira, H.; Tsunoda, S.; Okamoto, T.; Mukai,Y.; Shibata, H.; Nakagawa, S.; Mayumi, T. Biomaterials 2004, 25, 3259.
  • 8Buleandra, M.; Radu, G. L.; Tanase, I. Roum. Biotechnol.Lett. 2000, 5,423.
  • 9Zhu, Y.-C.; Cheng, G.-J.; Dong, S.-J. Biophys. Chem. 2002,97, 129.
  • 10Huang, H.; Hu, N.-F.; Zeng, Y.-H.; Zhou, G. Anal. Biochem.2002, 308, 141.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部