期刊文献+

不能被3整除的指数完全数的一个必要条件 被引量:1

A Necessary Condition of Exponentially Perfect Numbers Not Divisible by 3
下载PDF
导出
摘要 目的寻找构造不能被3整除的指数完全数的方法.方法初等数论的方法.结果指出了R.K.盖伊主编的《数论中未解决的问题》中一个错误的指数完全数,并且纠正了这个错误.利用初等数论的整除理论,给出了其中2个指数完全数的构造方法.结论提出了7个引理,通过这些引理证明了不能被3整除的指数完全数的一个必要条件. Aim the construction method of exponentially perfect numbers not divisible by 3 is searched.Method method of elementary number theory.Result a incorrect exponentially perfect number is pointed out in Unsolved Problems in Number Theory by Richard K.Guy,and this err is rectified.Using the divisible theory of elementary number theory,the construction methods of two exponentially perfect numbers is given.Conclusion seven lemmas are posed,a necessary condition of exponentially perfect numbers not divisible by 3 is proved by means of these lemmas.
作者 叶载良
出处 《商洛学院学报》 2007年第2期14-17,共4页 Journal of Shangluo University
关键词 指数因子 指数完全数 不能被3整除的指数完全数 exponential factor, exponentially perfect number, exponentially numbers not divisible by 3
  • 相关文献

参考文献10

  • 1[1]Graeme L,Cohen.On the largest component of an odd perfect number[J].J Austral Math Soc Ser A,1987(42):280-286.
  • 2[2]Massao Kishore.Odd perfect numbers not divisible by 3 are divisible by at least ten distinct primes[J].Math Comput,1977 (31):274-279.
  • 3[3]Massao Kishore.Odd perfect numbers not divisible by 3[J].Ⅱ,Math Comput,1983(40):405-411.
  • 4[4]Hagis P.Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors[J].Math Comput,1983 (40):399-404.
  • 5[5]Michael S,Brandstein.New lower bound for a factor of an odd perfect number[J].Abstracts Amer Math Soc,1982(3):257.
  • 6[6]Richard P,Brent,Graeme L.A new lower bound for odd perfect number[J].Math Comput,1989(53):431-437.
  • 7[7]Subbarao M V,Suryanarayana D.Exponentially perfect and unitary perfect numbers[J].Notices Amer Math Soc,1971(18):798.
  • 8[8]盖伊 R K.数论中未解决的问题[M].北京:科学出版社,2003.
  • 9[9]Straus E G,Subbarao M V.On exponential divisors[J].Duke Math J,1974(41):465-471.
  • 10[10]Subbarao M V.On some arithmetic convolutions[J].Proc Conf Kalamazoo MI,Springer Lecture Notes in Math,1972(251):247-271.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部