期刊文献+

一类解耦双曲守恒律系统的狄拉克激波 被引量:1

Delta shock waves for a class of decoupled hyperbolic system of conservation laws
原文传递
导出
摘要 研究一类解耦的具有线性退化特征的非严格或严格双曲守恒律系统的黎曼问题.借助特征分析方法,在广义Rankine-Hugoniot条件和熵条件下,获得该问题的狄拉克激波解. Riemann problems for a class of decoupled non-strictly or strictly hyperbolic system of conservation laws, which have a linearly degenerate characteristic, are studied. With the help of characteristic method, under generalized Rankine-Hugoniot relation and entropy condition, delta-shock solutions are obtained.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期325-329,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10461010) 云南大学"中青年骨干教师培养计划"资助项目
关键词 双曲守恒律系统 狄拉克激波(δ-激波) 广义Rankine-Hugoniot条件 熵条件 hyperbolic system of conservation laws delta shock wave generalized Rankube-Hugoniot relation entropy condition
  • 相关文献

参考文献8

  • 1TAN De-chun,ZHANG Tong.Two dimensional Riemann problem fora hyperbolic system of nonlinear conservation laws (Ⅰ):Four-Jcases[J].Journal of Differential Equations,1994,111:203-254.
  • 2TAN De-chun,ZHANG Tong,ZHENG Yu-xi.Delta-shock wavesas limits of vanishing viscosity for hyperbolic systems of conversation laws[J].J Differential Equations,1994,112(1):1-32.
  • 3LE FLOCH P.An existence and uniqueness result for two nonstrictly hyperbolic systems[J].Ecole Polytechnique:Centre de Mathematiques Appliquees,1990,219:126-138.
  • 4丁夏畦,王振.用Lebesgue-Stieltjes积分定义的间断解的存在唯一性[J].中国科学(A辑),1996,26(2):109-119. 被引量:3
  • 5杨汉春.具粘性项的非严格双曲守恒律组的定态解[J].云南大学学报(自然科学版),1997,19(3):304-308. 被引量:1
  • 6LI Jie-quan,YANG Shu-li,ZHANG Tong.The two-dimensional Riemann problem in gas dynamics[M].New York:Longman Scientic and Technical,1998.
  • 7YANG Han-chun.Riemann problem for a class of coupled hyperbolic of conservation laws[J].Journal of Differential Equations,1999,159 (2):447-484.
  • 8LAX P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[Z].Philadelphia:SIAM,1973.

二级参考文献4

  • 1Tan D,JDE,1994年,111卷,2期,255页
  • 2Tan D,JDE,1994年,112卷,1期,1页
  • 3Tan D,JDE,1994年,111卷,2期,203页
  • 4Barbara L. Keyfitz,Herbert C. Kranzer. A system of non-strictly hyperbolic conservation laws arising in elasticity theory[J] 1980,Archive for Rational Mechanics and Analysis(3):219~241

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部