期刊文献+

子环的和与积 被引量:11

The sum and product of subrings
原文传递
导出
摘要 讨论了环由子集生成的子环、子环的和与积的结构,子环的积对和的分配关系,证明了结合环类是完备代数类及可积代数类,从而是完备代数正规类及可积代数正规类. The structures of the subring generated by a subset of a ring, the structures of sum and product of subrings, the distribution product over the sum of subrings are discovered, it is showen that the class of associative rings is a class of complete algebras and a class of product algebras, so it is a normal class of complete algebras and a normal class of product algebras.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期335-338,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家民委基金资助项目(10571115) 云南省教育厅基金资助项目(03Z533D)
关键词 子环 理想 代数正规类 rings subings ideals the normal classes of algebras
  • 相关文献

参考文献11

二级参考文献29

  • 1任艳丽,王尧.Hereditary Radicals and Strongly Semisimple Radicals in Normal Classes of Algebras[J].Journal of Mathematical Research and Exposition,2004,24(4):597-602. 被引量:15
  • 2杨宗文.一般代数正规类中的δ-根类[J].云南大学学报(自然科学版),2005,27(5):380-382. 被引量:6
  • 3杨宗文.代数正规类的上根(英文)[J].云南大学学报(自然科学版),2006,28(1):8-11. 被引量:8
  • 4[1]Puczylowski E.R. On general theory of radicals [J]. Algebra Universalis, 1993,30:53~60
  • 5[2]Barnes W.E. ON the T-rings of Nobusawa [J]. PacificJ. Math., 1966, 18(3):411~422
  • 6[3]Hongjin F. and Stewart P. Radical theory for graded rings[J]. J. Austral. Math. Soc. (ser. A), 1992,52:143~153
  • 7[4]Pilz G. Near-rings[M]. 2nd E.dition. Amsterdam: North-Holland, 1983
  • 8[5]Yong Hua X. Non-associative and non-distributive rings( I )[J]. Acta Math. Sinica.. 1979,22(1):1~13
  • 9[6]Junmin H. On the theory of radicals for Bck-algebras( I )[J].J. Nanjing Univ. Math. Biquarterly, 1985,2(1):74~87
  • 10[7]Shuwei B. and Daoji M. On left-Symmetric algebras ( I ) [J]. Acta Sci. Nat. Univ. Nankai. , 1995, 28(4):72~77

共引文献16

同被引文献34

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部