期刊文献+

支持向量聚类的一种改进数据预处理

An Improved Data Pre-processing Method of Support Vector Clustering
下载PDF
导出
摘要 基于R*-tree数据结构,提出了一种改进的数据预处理方法,它能有效地从训练集里剔除掉一些对聚类没有意义的点。实验表明通过这个方法能有效的减少无意义的非支持向量点,而不需要对整个数据进行训练,明显地提高了运行的速度。 The paper introduces an improved data pre-processing method based on R * -tree data structure, which can effectively eliminate data points from the training data set that are not crucial for clustering. The experiment shows that the method can effectively decrease non-support vectors and it is not necessary to train the whole data set, then, increasing the speed of operation remarkably.
出处 《山东科技大学学报(自然科学版)》 CAS 2007年第2期75-78,共4页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(10571109)
关键词 支持向量聚类 数据预处理 R*-tree support vector clustering data pre-processing R^* -tree
  • 相关文献

参考文献7

  • 1丁泽进,于剑.聚类分析技术综述[M]//机器学习及其应用.北京:清华大学出版社,2006:59-87.
  • 2A.K.Jain,M.N.Murty,P.J.Flynn.Data clustering:a review[J].ACM Computer Surveys,1999,31(3):264-323.
  • 3A.Ben-Hur,D.horn,H.T.Siegelmann,et al.Support vector clustering[J].J.Mach.Learn.Res.2001(2):125-137.
  • 4N.Bechmann,H.P.Kriegel,R.Scheider,et al.The R^*-tree:an efficient and robust access method for points and retangles[C]//Proceedings of ACM SIGMOD International Conference on Management of Data,Atlantic City,1990:322-331.
  • 5M.Ester,H.P.Kriegel,J.Sander,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of Second International Conference on Knowledge Discovery and Data Mining,Oregon,Portland,1996:226-231.
  • 6R.-E.Fan,P.-H.Chen,C.-J.Lin.Working set selection using the second order information for training SVM[J].Journal of Machine Learning Research,2005(6):1889-1918.
  • 7P.S.Bradley,U.Fayyad,C.Reinar.Scaling clustering algorithms to large databases[C]//Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining,New York:AAAI Press,1998:9-15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部