期刊文献+

植物蔗糖转运蛋白的基因与功能 被引量:33

Sucrose Transporter Genes and Their Functions in Plants
下载PDF
导出
摘要 蔗糖是植物体内碳水化合物长距离转运的主要(甚至唯一)形式,为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输,以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来,已先后有多个SUT基因的cDNA得到克隆与功能分析,涉及34种双子叶与单子叶植物。每种植物都有一个中等规模的SUT基因家族,其不同成员之间具有较高的氨基酸序列同源性,但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能,以及研究方法等方面的研究进展,并简要介绍我们在橡胶树SUT基因研究上的初步结果。 In plants, sucrose is the major or even sole carbon source for long-distance transport and is both a source of carbon skeletons and energy for plant growth and development. Sucrose transmembrane events occur by means of a kind of carrier protein (i.e., sucrose transporter SUT), which then plays a critical role in phloem-mediated source-to-sink Sucrose transport and Sucrose uptake to sinks. Since the first identification and cloning of a SUTcDNA from spinach, many SUTcDNAs have been cloned and characterized in 34 different plant species, in both dicots and monocots. In each plant species, SUTs represent a medium-sized gene family, containing members with high amino acid identity but differences in kinetic properties, substrate specificity and expression patterns. In this paper, we review the advances in the past decade concerning different aspects of SUTgenes, including classification and phylogeny, cellular localization and function, and research methods employed. Our preliminary results in the SUTgenes of Hevea brasiliensis are also presented.
出处 《植物学通报》 CSCD 北大核心 2007年第4期532-543,共12页 Chinese Bulletin of Botany
基金 中国热带农业科学院科技基金(No.Rky0608)
关键词 细胞定位 功能 研究方法 蔗糖转运蛋白 蔗糖跨膜运输 cellular localization, function, methodology, sucrose transporter protein, transmembrane sucrose transport
  • 相关文献

参考文献54

  • 1徐云远,种康,许智宏,谭克辉.RNA原位杂交实用技术[J].植物学通报,2002,19(2):234-238. 被引量:13
  • 2张忠恒,郑易之,段晓刚,佟德娟.戊二醛浓度对免疫电镜胶体金标记密度影响的定量分析[J].植物学通报,1998,15(A00):116-118. 被引量:1
  • 3Ageorges A, Issaly N, Picaud S, Delrot S, Romieu C (2000). Identification and functional expression in yeast of a grape berry sucrose carrier. Plant Physiol Biochem 38, 177-185.
  • 4Aldape M, Elmer AM, Chao WS, Grimeea HD (2003). Identification and characterization of a sucrose transporter isolated from the developing cotyledons of soybean. Arch Biochem Biophys 409, 243-250.
  • 5Aoki N, Scofleld GN, Wang XD, Patrick JW, Offler CE, Furbank RT (2004). Expression and localization analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues. Planta 219, 176-184.
  • 6Aoki N, Hirose T, Takahashi S, Ono K, Ishimaru K, Ohsugi R (1999), Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.). Plant Cell Physiol 40, 1072-1078.
  • 7Aoki N, Hirose T, Scofieid GN, Whitfeid PR, Furbank RT (2003). The sucrose transporter gene family in rice, Plant Cell Physiol 44, 223-232.
  • 8Aoki N, Whitfeld P, Hoeren F, Scofield G, Newell K, Patrick J, Offler C, Clarke B, Rahman S, Furbank RT (2002).Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Mol Biol 50, 453-462.
  • 9Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000). SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12, 1153-1164.
  • 10Barth I, Meyer S, Sauer N (2003). PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major, Plant Cell 15, 1375-1385.

共引文献12

同被引文献516

引证文献33

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部