期刊文献+

基于分散控制理论的多机系统低频振荡抑制 被引量:1

Low-frequency oscillation damping for multi-machine systems by using decentralized conurol theory
原文传递
导出
摘要 常规的电力系统低频振荡抑制措施是在发电机励磁系统中加装电力系统稳定器(PSS),然而它在多机电力系统中的应用并没有充分的理论研究。将大系统分散控制原理应用于多机电力系统低频振荡抑制问题,只要分散阻尼控制器(DDC)的阶数足够高,分散闭环控制系统的低频振荡模态总可以在复平面内任意配置。分析了PSS与DDC的关系,论证了PSS是DDC的一种特殊形式,因而从理论上说明了DDC比PSS优越。将DDC的优化配置表示为一个带不等式约束的非光滑优化问题并用遗传算法求解。以新英格兰测试系统和我国西北电网为算例的计算结果表明,在发电机励磁系统中加装DDC是一种有效的低频振荡抑制新措施。 The conventional power system low-frequency oscillation damping measure is to install power system stabilizers (PSSs) in the excitation systems of generators. However, adopting of the measure for multi-machine systems is not sufficiently studied theoretically. Decentralized control theory for large systems was used for multi-machine power system low-frequency oscillation damping, and the low-frequency oscillation modes of decentralized close-loop control systems can be unlimitedly set in the complex plane as long as the order of decentralized damping controllers (DDCs) is high enough. The relationship between PSS and DDC is studied, and it is proved that PSS is a special type of DDC, so it is shown in theory that DDC is more ascendant than PSS. The optimal configuration of DDC was expressed as a non-smooth optimization problem with inequality constraints and was solved by genetic algorithm. The calculation results of New England Test System and that of Northwest China Power Grid show that installing DDCs in the excitation systems of generators is an effective measure for low-frequency oscillation damping.
出处 《华东电力》 北大核心 2007年第6期35-39,共5页 East China Electric Power
关键词 电力系统 低频振荡 分散控制 动态补偿器 阻尼控制器 电力系统稳定器 遗传算法 power system low-frequency oscillation decentralized control dynamic compensator damping controller power system stabilizer genetic algorithm
  • 相关文献

参考文献16

  • 1Demello F P,Concordia C.Concepts of synchronous machine stability as affected by excitation control[J].IEEE Transactions on Power Apparatus and Systems,1969,88(4):316-329.
  • 2Demello F P,Nolan P J.Coordinated application of stabilizer in multimachine power system[J].IEEE Transactions on Power Apparatus and Systems,1980,99(3):892-901.
  • 3Khaldi M R,Sarkar A K,Lee K Y,Park Y M.The modal performance measure for parameter optimization of power system stabilizers[J].IEEE Transactions on Energy Conversion,1993,8(4):660-666.
  • 4Zhang P,Coonick A H.Coordinated synthesis of PSS parameters in multi-machine power systems using the method of in-equalities applied to genetic algorithms[J].IEEE Transactions on Power Systems,2000,15(2):811-816.
  • 5Abido M A.An efficient heuristic optimization technique for robust power system stabilizer design[J].Electric Power Systems Research,2001,58(2):53-62.
  • 6Araujo P B,Xanetta L C.Pole placement method using the system matrix transfer function and sparsity[J].Electrical Power and Energy Systems.2001,23(3):173-178.
  • 7Milanovic J V.Damping of the low-frequency oscillations of the generator:dynamic interactions and the effectiveness ofthe controllers[J].IEE Proceedings of Generation,Transmission and Distribution,2002,149(6):753-760.
  • 8Mithulananthan N,Canizares C A,Reeve J,Rogers G J.Comparison of PSS,SVC,and STATCOM controllers for damping power system oscillations[J].IEEE Transactions on Power Systems,2003,18(2):786-792.
  • 9牛振勇,杜正春,方万良,夏道止.基于进化策略的多机系统PSS参数优化[J].中国电机工程学报,2004,24(2):22-27. 被引量:83
  • 10Zanetta L C,Cruz J J.An incremental approach to the coordinated tuning of power systems stabilizers using mathematical programming[J].IEEE Transactions on Power Systems,2005,20(2):895-902.

二级参考文献5

  • 1王万军(Wang Wanjun).多运行方式下电力系统稳定器及最优励磁控制器的参数协调[J]..
  • 2王海风,1988年
  • 3袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 4Z.米凯利维茨.演化程序-遗传算法和数据编码的结合[M].科技大学出版社,2000..
  • 5朱振青,王新.复杂电力系统中电力系统稳定器的参数优化[J].西安交通大学学报,1989,23(S1):71-77. 被引量:3

共引文献84

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部