期刊文献+

SiC/(W,Ti)C梯度陶瓷喷嘴的设计与制备 被引量:4

原文传递
导出
摘要 针对磨料喷射加工中陶瓷喷嘴在出、入口磨损最严重,而中间区域磨损相对较小的特点,提出将梯度功能材料理论运用于喷嘴材料的设计和制造中,研发梯度陶瓷喷嘴材料.通过控制陶瓷喷嘴材料的成分,使其沿喷嘴轴向呈梯度变化,从而使陶瓷喷嘴材料制备过程中于喷嘴入口表层形成残余压应力,达到缓解陶瓷喷嘴在使用过程中所产生的应力,提高其入口表层硬度等目的.提出了梯度陶瓷喷嘴材料设计目标,通过对梯度陶瓷喷嘴材料的物理化学相容性分析计算,确定了SiC/(W,Ti)C梯度陶瓷喷嘴材料各组分的极限体积含量.建立了梯度陶瓷喷嘴的物理模型、物性参数模型及组成分布模型,采用有限元方法分析了组成分布指数p对单梯度陶瓷喷嘴残余应力的影响,确定了SiC/(W,Ti)C单梯度陶瓷喷嘴最佳组成分布指数为0.5.以本设计模型和有限元分析结论为基础,制备了SiC/(W,Ti)C单梯度陶瓷喷嘴.
出处 《中国科学(E辑)》 CSCD 北大核心 2007年第7期857-865,共9页 Science in China(Series E)
基金 高等学校博士点基金(批准号:20030422015) 山东省自然科学基金(批准号:Y2004F08 Z2003F01) 教育部新世纪优秀人才支持计划(批准号:NCET-04-0622)资助项目
  • 相关文献

参考文献2

二级参考文献8

  • 1邓建新,艾兴,郑芸芳.Al_2O_3-TiB_2陶瓷刀具材料的研制及其耐磨性能研究[J].现代技术陶瓷,1994,15(2):8-13. 被引量:24
  • 2DENG Jianxin, LEE Taichiu. Techniques for improved surface integrity and reliability of machined ceramic composites[J]. Surf Eng, 2000, 16 (5): 411--414.
  • 3RAYKOWSKI A, HADER M. Blasting cleaning of gas turbine components: deposit removal and substrate deformation [J ].Wear, 2001, 249: 127--132.
  • 4DJUROVIC B, JEAN E, Coating removal from fiber composites and aluminum using starch media blasting [ J ]. Wear, 1999,224 : 22--37.
  • 5FINNIE I, MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear, 1978, 48: 181--187.
  • 6WELLMAN R G, ALLEN C. The effect of angle of impact and material properties on the erosion rates of ceramics[ J ]. Wear,1995, 186-187: 117--123.
  • 7SRINIVASAN S, SCATTERRGOOD R O. Effect of erodent hardnesson erosion of brittle materials[J]. Wear, 1988, 128:139--15.
  • 8SHIPWAY P H, HUTCHINGS I M. The influence of particle properties on the erosive wear of sintered boron carbide [ J ].Wear, 1991, 149: 85--98.

共引文献8

同被引文献24

  • 1邓建新,张希华.B_4C/SiC_w陶瓷喷砂嘴的制备及其冲蚀磨损机理研究[J].硅酸盐通报,2004,23(3):18-20. 被引量:9
  • 2王瑞和,沈忠厚,周卫东.高压水射流破岩钻孔的实验研究[J].石油钻采工艺,1995,17(1):20-25. 被引量:22
  • 3Christopher D R, Mark E C, Mattick A T. Pulsed plasma thruster system for microsatellites. J Spacecraft Rockets, 2005, 42(1): 161-170.
  • 4Uezu J J, IioJ P, Yukiya K, et al. Study on pulsed plasma thruster configuration to expand impulse bit range. In: 29th International Electric Propulsion Conference. IEPC. 2005. 234.
  • 5Spanjers G G, Lotspeich J S, McFall K A, et al. Propellant losses because of particulate emission in a pulsed plasma thruster. J Propul Power, 1998, 14(4): 554-559.
  • 6Markusic T E, Kurt A P, Choueiri E Y, et al. Ablative z-pinch pulsed plasma thruster. J Propul Power, 2005, 21(3): 392-405.
  • 7Hiroyuki K, Kakami A, Furuta Y, et al. Liquid propellant pulsed plasma thruster. In: 28th International Electric Propulsion Conference. IEPC. 2003. 087.
  • 8Carsten A S. Investigation of thrust mechanisms in a water fed pulsed plasma thruster. Dissertation of Doctoral Degree. Columbus: Ohio State University, 2003.68-70.
  • 9Hiroyuki K, Yohei F, Kimiya K, et al. A pulsed plasma thruster using water as the propellant. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition. AIAA. 2004. 3460.
  • 10Jahn R G. Physics of Electric Propulsion. New York: McGraw-Hill, 1968.12-13.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部