期刊文献+

Loop细分曲面精确求值新公式

A New Exact Evaluation Formula for Loop Subdivision Surfaces
下载PDF
导出
摘要 利用控制网格拓扑结构的对称性,通过将奇异点周围1-环和2-环的控制顶点进行离散Fourier变换(DFT)得到分块对角阵,将其进行特征分解及排序之后,再通过离散Fourier逆变换(IDFT)和截断等操作得到细分矩阵的高次幂的表达式,从而得到Loop细分曲面新的精确参数化公式. A block diagonal matrix can be obtained by utilizing the discrete Fourier transform (DFT) and the symmetrical structure called 1-ring and 2-ring in the vicinity of an extraordinary point on a mesh. By using in a sequence the eigen-decomposition, a permutation, the inverse discrete Fourier transform (IDFT) and a truncation on the matrix, an exact and explicit parametrization formula for Loop subdivision surfaces is proposed.
作者 杨军 曾晓明
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第7期854-860,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(10571145)
关键词 细分曲面 离散Fourier变换 参数化 subdivision surfaces discrete Fourier transform (DFT) parametrization
  • 相关文献

参考文献6

  • 1Doo D,Sabin M A.Behaviour of recursive subdivision surfaces near extraordinary points[J].Computer-Aided Design,1978,10(6):356-360
  • 2Ball A A,Storry D J T.Condition for tangent plane continuity over recursively generated B-spline surfaces[J].ACM Transactions on Graphics,1988,7(2):83-102
  • 3Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGAPH,Orlando,1998:395-404
  • 4Stam J.Evaluation of Loop subdivision surfaces[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Orlando,1998:Course Notes # 37
  • 5Lai S,Cheng F.Parametrization of general Catmull-Clark subdivision surfaces and its application[J].Computer Aided Design & Applications,2006,3:1-4
  • 6Zeng X M,Yang J.Convergence property of control meshes of Loop subdivision surfaces[J].Journal of Information & Computational Science,2005,2(4):805-813

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部