期刊文献+

基于自适应蚁群算法的水电站水库优化调度 被引量:7

Optimal scheduling of hydroelectric power plant based on self-adaptive ant colony algorithm
下载PDF
导出
摘要 应用自适应蚁群算法来求解水电站优化调度问题,该算法把问题解抽象为蚂蚁路径,利用状态转移,信息素更新和邻域搜索以获取最短路径。实例计算表明,该算法计算精度高,收敛速度快,克服了传统蚁群算法计算时间长,易于陷入局部最优的缺点,能较好地避免动态规划的维数灾问题,可求解具有复杂约束条件的非线性规划问题,为解决水电站优化调度问题提供了一种有效的途径。 A novel self-adaptive ant colony algorithm (SA-ACA) was presented to solve optimal scheduling problem for hydroelectric power plant. The SA-ACA is abstracted as the ant path from the solution of problem. The state transition rule, global updating information and the neighbor search are also employed to get the optimal scheduling. The case computational results show that $A-ACA has the advantages of the higher calculating accuracy and the faster convergence speed, and overcome the shortcomings of the longer computation time, easily dropping into partial optimization and dimension number calamity. SA-ACA is an effective method for solving nonlinear optimal problem with complicated strict terms, and provides an applied approach to solve the optimal scheduling problem with hydroelectric power plant.
出处 《中国电力》 CSCD 北大核心 2007年第7期48-50,共3页 Electric Power
关键词 自适应蚁群算法 水电站 优化调度 动态规划 self-adaptive ant colony algorithm hydroelectric power plant optimal scheduling dynamic programming
  • 相关文献

参考文献5

二级参考文献26

  • 1杨敬涛,周建中,向凌,刘博.伪并行遗传算法及其在水电站经济运行中的应用[J].电网技术,2004,28(14):53-56. 被引量:6
  • 2韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 3Mashhadi H R, Shanechi H M, ,lucas C A. New genetic algorithm with lamarckian individual learning for generation scheduling [J]. IEEE Trans on Power Systems, 2003, 18(3): 1181-1186.
  • 4Senjyu T, Yamashiro H, Uezato K et al. A unit commitment problem by using genetic algorithm based on unit characteristic classification[C]. IEEE.Proceedings of Power Engineering Society Winter Meeting, NewYork, 2002, Vol. 1: 58-63.
  • 5A.Colorni,M.Dorigo and V.Maniezzo, "Distributed optimization by ant colonies" in Proc.First Europ.Conf.Artificial Life, F.Varela and P.Bourgine, Eds.Paris, France:Elsevier,1991,pp.134-142
  • 6A.Colorni,M.Dorigo and V.Maniezzo, "An investigation of some properties of an ant algorithm," in Proc. Parallel Problem Solving from Nature Conference(PPSN'92), R.Manner and B.Manderick Eds.Brussels, Belgium:Elsevier,1992,pp.509-520
  • 7M.Dorigo, "Optimization learning and natural algorithms," Ph.D.Thesis, Dip.Elettronica e Informazione, Politecnico di Milano, Italy, 1992.
  • 8Marco Dorigo, Vittorio Maniezzo, Alberto Colorni, "Ant System:Optimizaition by a Colony of Cooperating Agents". IEEE Transactions on Systems, Man and Cybernetics-part, Vol.26.NO.1.February 1996
  • 9V.Maniezzo, A.Colorni and M.Dorigo, "The ant system applied to the quadratic assignment problem," Tech.Rep.IRIDIA/94-28.Universite Libre de Bruxelles, Belgium, 1994
  • 10S.Goss,R,.Beckers, J.L. Denbourg, S. Aron and J.M. Pasteels, "How trail laying and trail following can solve foraging problems for ant colonies, " in Behavioral Mechanisms of Food Selection, R.N. Hughes Ed., NATO-ASI Series. Berlin:Springer-Verlag, vol.G20,1990.

共引文献268

同被引文献76

引证文献7

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部