期刊文献+

Carathéodory系统解的存在性 被引量:1

The existence of solutions of Carathéodory systems
下载PDF
导出
摘要 将Carathéodory系统转化为Kurzweil广义常微分方程,利用已知的Kurzweil广义常微分方程解的存在性理论讨论了Carathéodory系统解的存在性. Carathéodory systems are changed into Kurzweil generalized ordinary differential equations. The existence of solutions for Carathéodory systems is discussed bY using the existence theory of solution of Kurzweil generalized ordinary differential equation.
作者 马学敏
出处 《西北师范大学学报(自然科学版)》 CAS 2007年第2期9-11,共3页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10271095) 甘肃省"555创新人才工程"资助项目
关键词 Carathéodory系统 KURZWEIL方程 Perron可积 有界变差函数 Carathéodory system Kurzweil equation Perron integrability bounded variation function
  • 相关文献

参考文献3

  • 1李宝麟,吴从炘.Kurzweil方程的Φ-有界变差解[J].数学学报(中文版),2003,46(3):561-570. 被引量:23
  • 2SCHWABIK S.Generalized Ordinary Differential Equations[M].Singapore:World Scientific,1992.
  • 3CHEW T S.On Kurzweil generalized ordinary differential equations[J].J Differential Equations,1988,76(2):286-293.

二级参考文献15

  • 1Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449.
  • 2Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583.
  • 3Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389.
  • 4Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian).
  • 5Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian).
  • 6Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992.
  • 7Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293.
  • 8Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270.
  • 9Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243.
  • 10Musielak J.. Orliez W.. On generalized variations (I). Studia Math., 1959, 18: 11-41.

共引文献22

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部