期刊文献+

基于分组重量编码的蛋白质同源寡聚体分类研究

Classification of Protein Homo-Oligomers with Encoding on the Basis of Grouped Weight for Protein Sequence
下载PDF
导出
摘要 基于一种新的特征提取方法——分组重量编码(Encoding on the basis of Grouped Weight,简记为EBGW),采用组分耦合算法作为分类器,从蛋白质一级序列出发对四类同源寡聚体蛋白进行分类研究。结果表明,在Jackknife检验下,基于分组重量编码的分类方法总体分类精度达到70.92%,比基于氨基酸组成和加权伪氨基酸成分特征提取方法分别提高20.28和7.53个百分点,说明分组重量编码对于蛋白质同源寡聚体分类是一种高效的特征提取方法。 The homo-dimer, homo-trimer, homo-tetramer, homo-hexamer of proteins were classified with a new encoding method-- encoding on the basis of grouped weight (EBGW) and component-couple algorithm. It was found that the overall classification accuracy by Jackknife test was 70.92%, which was 20.28 and 7.53 percentile higher than that of the amino acid composition and that of the weight pseudo-amino acid composition method with the same classifying algorithm on the same data set. The results indicate that EBGW method has reached a satisfying performance despite its simplicity.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第2期91-93,共3页 Journal of National University of Defense Technology
关键词 分组重量编码 同源寡聚体 组分耦合算法 encoding on the basis of grouped weight homo-oligomer component-coupled algorithm
  • 相关文献

参考文献10

二级参考文献65

  • 1阎隆飞 孙之荣.蛋白质分子结构[M].北京:清华大学出版社,2000..
  • 2Anfinsen CB, Haber E, Sela M, et al. The kinetics of formation of native ribonuclease during oxidation of the reduced polypepfide chain[J]. Proc Nail Acad Sci USA, 1961,47: 1309-1314.
  • 3Klotz IM, Darnall DW, Langerman NR. The protein, 3rd edition[M]. New York: Academic Press, 1975,1:293--411.
  • 4Price NC. Assembly of multi-subtmit structure[M]. New York:Oxford University Press, 1994.
  • 5Robert G. Prediction of quaternary structure from primary structure[J]. Biolnformatics, 2001,17:551-556.
  • 6Vapnik V. The nature of statistical loaming theory[M]. NewYork: Springer, 1995.
  • 7Vapnik V. Statistical learning theory[M]. New York: Wiely,1998.
  • 8Brown M, Grundy W, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines[J]. Proc Nail Acad Sci USA, 2000,97:262-267.
  • 9Jaakkola T, Diekhans M, Haussler D. Using the fisher kernel method to detect remote protein homologies[A]. Proceedings of the 7th international conference on intelligent systems for molecular biology[C]. Menlo Park, CA: AAAI Press, 1999. 149-158.
  • 10Zien A, Ratsch G, Mika S, et al. Engineering support vector machine kernels that recognize translation initiation sites[J].Bioinformatics. 2000,16:799---807.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部