期刊文献+

基于核主成分分析的铁谱磨粒特征提取方法研究 被引量:11

KPCA-based Technique for Debris Feature Extraction
下载PDF
导出
摘要 针对铁谱分析的磨粒识别过程中存在原始磨粒特征描述指标参数多、非线性突出的问题,提出基于核主成分分析的磨粒特征提取方法,介绍该方法的原理与算法。结合某柴油发动机故障检测与分析系统中铁谱磨粒自动识别的应用实例,并与传统主成份分析方法进行对比分析,结果表明该方法在进行样本非线性特征参数指标综合以及特征维数压缩方面具有可行性和有效性。 To deal with the problem of Debris' feature extraction with the characteristic of large scale number in description parameter and nonlinear relationship among these parameters, a KPCA-based method is presented. Based on the detailed introduction of algorithm, a real case was studied for the purpose of constructing a debris automatic recognition sub-system which can be served for diesel engine fault detection and analysis system. The results of experimental research and a comparison with linear PCA demonstrate that KPCA-based approach is feasible and valid for synthesizing nonlinear characteristic parameter and reducing feature dimension.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第2期113-116,共4页 Journal of National University of Defense Technology
关键词 核主成分分析(KPCA) 铁谱磨粒 特征提取 KPCA debris feature extraction
  • 相关文献

参考文献5

  • 1李岳,吕克洪.主成分分析在铁谱磨粒识别中的应用研究[J].国防科技大学学报,2004,26(1):89-94. 被引量:12
  • 2Scholkopf B,Smola B A,Müller K R.Kernel Principal Component Analysis.Advances in Kernel Methods-support Vector Learning[M].Cambridge,MA:MIT Press,1999:327-352.
  • 3Shawe-Taylor J.Nello Cristianini,Kernel Method for Pattern Analysis[M].Cambridge University Press,2004.
  • 4David V,Sanchez A.Advanced Support Vector Machines and Kernel Methods[R].Neurocomputing,2003,55:5-20.
  • 5Li Y J,Zuo H F,Wu Z F.Debris Monitoring and Analyzing System and Its Application in Aeroenging[J].Transaction of Nanjing University of Aeronautics &Astronautics,2001,18(2).

二级参考文献1

  • 1Anderson D P 金元生等(译).磨粒图谱[M].北京:机械工业出版社,1987.1-14.

共引文献11

同被引文献140

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部