期刊文献+

非相干的CSK通信系统及其性能分析 被引量:2

Noncoherent CSK communication system and its performance analysis
下载PDF
导出
摘要 提出一种带可调权值的非相干CSK(chaos shift keying)通信系统,分析了其在多径信道环境下的理论误码性能并仿真,结果表明系统的误码性能较好。当权值满足一定条件时,系统的多径误码性能和DCSK(differential chaos shift keying)通信系统的相同,并且其AWGN(加性高斯白噪声)误码性能优于一些已有的非相干CSK通信系统。 A noncoherent CSK communication system with adjustable weights was proposed. Both theoretical analysis and simulation for its BER performance under the environment of multipath channels were studied. The results show that the BER performance of the system is good. When the weights meet certain requirements, the multipath BER performance of the proposed system is identical to that of the DCSK communication system and its AWGN BER performance is better than those of some existing noncoherent CSK communication systems.
出处 《通信学报》 EI CSCD 北大核心 2007年第6期80-84,共5页 Journal on Communications
基金 国家自然科学基金资助项目(60572025) 国家教育部基金资助项目(NCET-04-0813 105137) 广东省自然科学基金资助项目(05006506 04205783)~~
关键词 混沌 CSK通信系统 非相干检测 多径干扰 chaos CSK communication system noncoherent detection multipath interference
  • 相关文献

参考文献15

  • 1PECORA L M,CAROLL T L.Synchronization in chaotic systems[J].Physics Review Letters,1990,64(8):821-824.
  • 2冯久超,余英林,周曙.基于混沌的扩频通信[J].通信学报,1998,19(6):76-83. 被引量:21
  • 3KENNEDY M P,KOLUMBAN G,KIS G.Chaotic modulation for robust digital communications over multipath channels[J].International Journal of Bifurcation and Chaos,2000,10(4):695-718.
  • 4FENG J C,TSE C K.On-line adaptive chaotic demodulator based on radial-basis-function neural networks[J].Physical Review E,2001,63(2):1-10.
  • 5罗伟民,丘水生,禹思敏.混沌数字通信系统及其性能分析[J].通信技术,2001,34(1):46-48. 被引量:6
  • 6KISEL A,DEDIEU H,SCHIMMING T.Maximum likelihood approaches for noncoherent communications with chaotic carriers[J].IEEE Transactions on Circuits and Systems-Ⅰ,2001,48(5):533-542.
  • 7FENG J C,TSE C K,LAU F C M.A chaos tracker applied to non-coherent detection in chaos-based digital communication systems[A].IEEE International Symposium on Circuits and Systems[C].Sydney,2001.795-798.
  • 8TSE C K,LAU F C M,CHEONG K Y,et al.Return-map-based approaches for noncoherent detection in chaotic digital communications[J].IEEE Transactions on Circuits and Systems-Ⅰ,2002,49(10):1495-1499.
  • 9ZHU Z W,LEUNG H.Combined demodulation with adaptive blindchannel equalization for chaotic modulation communication systems[J].IEEE Transactions on Circuits and Systems-Ⅰ,2002,49(12):1811-1820.
  • 10MURALI K,LEUNG H,YU H Y.Design of noncoherent receiver for analog spread-spectrum communication based on chaotic masking[J].IEEE Transactions on Circuits and Systems-Ⅰ,2003,50(3):432-441.

二级参考文献23

  • 1[1]Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821.
  • 2[2]Pecora L M, Carroll T L. Driving systems with chaotic signals [J]. Physical Review A, 1991, 44(4): 2374.
  • 3[3]Kocarev L, Halle K S, Eckert K, et al. Experimental demonstration of secure communication via chaotic synchronization [J]. International Journal of Bifurcation and Chaos, 1992, 2(3): 709-713.
  • 4[4]Dedieu H, Kennedy M P, Hasler M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chuas circuits [J]. IEEE Transactions on Circuits and Systems Ⅱ, 1993, 40(10): 634-643.
  • 5[5]Kolumbán G, Kis Gabor, Jákó Zoltán, et al. FM-DCSK: a robust modulation scheme for chaotic communications [J]. IEICE Transactions, 1998, E81-A(9): 1798-1802.
  • 6[6]Kolumban G, Kennedy M P, Chua L O. The role of synchronization in digital communications using chaos-part Ⅱ: chaotic modulation and chaotic synchronization [J]. IEEE Transactions on Circuits and Systems Ⅰ, 1998, 45(11): 1129-1140.
  • 7[7]Kolumban G, Kennedy M P, Chua L O. The role of synchronization in digital communications using chaos-part Ⅰ: fundamentals of digital communications [J]. IEEE Transactions on Circuits and Systems Ⅰ, 1997, 44(10): 927-936.
  • 8[8]Allgood K T, Sauer T D, Yorke J A. Chaos an introduction to dynamical systems [M]. New York: Springer-Verlag, 1997.
  • 9[9]Papoulis A, Pillai S U. Probability, random variables, and stochastic processes [M]. New York: Boston McGraw-Hill, 2002.
  • 10[10]Meyer R, Christensen N. Bayesian reconstruction of dynamical systems [J]. Physical Review E, 2000, 62: 3535-3542.

共引文献35

同被引文献26

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部