期刊文献+

GELFAND商环和正规素谱 被引量:5

Gelfand Factor Rings and Normal Spectra
下载PDF
导出
摘要 设R是任意带单位元的结合环,specl(R)是弱Zariski拓扑空间。利用了环的素谱的一些拓扑性质去刻画Gelfand商环。对任意环R,N(R)表示环R的素根,证明了R/N(R)是Gelfand环当且仅当spec(R)∪maxl(R)是正规拓扑空间,当且仅当maxl(R)是spec(R)∪maxl(R)的保核收缩映射。 Let R be any associative ring with identity. Then specl (R) is a space with weak Zariski topology. In this paper, some Gelfand factor rings' equivalent conditions are proved by using some topological properties of rings. It is proved that if R is any ring and N(R ) is a prime radical of R, then R/N(R) is a Gelfand ring if and only if spec(R) ∪maxl(R) is a normal space, if and only if maxl(M) is a retract of spec(R)∪ maxl(R).
作者 张国印
出处 《金陵科技学院学报》 2007年第2期1-4,共4页 Journal of Jinling Institute of Technology
基金 国家自然科学基金资助项目(10671137和10626012) 江苏省高校自然科学基金资助项目(06kjd110068)
关键词 Gelfand环 弱Zariski拓扑 正规谱 Gelfand ring weak Zariski topology normal spectra
  • 相关文献

参考文献13

  • 1[1]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectrum of a Noncommutative Ring[J].Comm.Algebra,2006,34(8):2795-2810.
  • 2[2]ZHANG Guo-yin,TONG Wen-ting,WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2879-2896.
  • 3[3]Demarco G,Orsatti A.Commutative Rings in Which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466.
  • 4[4]Sun S H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194.
  • 5[5]SunS H.Noncommutative rings in which every prime ideal is contained in a unique maximal ideal[J].J.of Pure and Applied Algebra,1991,76:179-192.
  • 6张国印,佟文廷.拓扑右R—模上的谱空间[J].南京大学学报(数学半年刊),2000,17(1):15-20. 被引量:4
  • 7张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 8张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 9[9]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker Inc.,1984.
  • 10[10]Dauns J.Primal modules[J].Comm.Algebra,1997,25,(8):2409-2435.

二级参考文献28

  • 1张国印.任意环的乘法模(英文)[J].南京大学学报(数学半年刊),2006,23(1):59-69. 被引量:3
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3[1]Demarco,G.,Orsatti,A..Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466.
  • 4[2]Sun,S.H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra.,1992,78:183-194.
  • 5[3]ZHANG Guo-yin,WANG Fang-gui and TONG Wen-ting.Multiplication Modules in which Every Prime Submodule Is Contained in a Unique Maximal Submodule[J].Comm.Algebra,2004,32(5):1945-1959.
  • 6[4]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectra of Maximal 1-sided Ideals and Primitive Ideals[J].Comm.Algebra,2006,34(8):2002-2023.
  • 7[6]McCasland,R.L.,Moore,M.E.,Smith,P.F.On the Spectrum of a Module over a Commutative Ring[J].Comm.Algebra,1997,25(1):79-103.
  • 8张国印.任意环上的模谱[J].南京大学学报数学半年刊,1999,16(1):42-52.
  • 9[9]Abd El-Bast,Z.,Smith,P.F..Multiplication Modules[J].Comm.Algebra,1988,16(4):32-36.
  • 10[10]Tuganbaev,A.A.Multiplication Modules over Non-communicative[J].Rings.Sbornik:Mathematics,2003,194,(12):1837-1864.

共引文献6

同被引文献46

  • 1张国印.拓扑模的谱[J].金陵科技学院学报,2006,22(3):5-8. 被引量:2
  • 2张国印.单列模与拓扑模[J].金陵科技学院学报,2006,22(2):1-4. 被引量:5
  • 3[1]ZHANG Guo-yin,TONG Wen-ting and WANG Fang-gui.Spectrum of a Noncommutative Ring[J].Comm.Algebra,2006,34(8):2795-2810
  • 4[2]ZHANG Guo-yin,WANG Fang-gui and Xu Wen-bing.Gelfand Factor Rings and Weak Zariski Topologies[J].Comm.Algebra,2007,35(8):2628-2645
  • 5[4]Demarco G,Orsatti A.Commutative Rings in which Every Prime Ideal Is Contained in a Unique Maximal Ideal[J].Proc.Amer.Math.Soc.,1971,30(3):459-466
  • 6[5]Sun S.H.Rings in which Every Prime Ideal Is Contained in a Unique Maximal right Ideal[J].J.of Pure and Applied Algebra,1992,78:183-194
  • 7[6]McDonald B R.Linear Algebra Over Commutative Rings[M].New York and Basel:Marcel Dekker,Inc.,1984
  • 8[7]刘绍学.环与代数[M],北京:科学出版社,2001:114-192
  • 9[8]Rosenberg A.L.Noncommutative Algebraic Geometry and Representations of Quantized Algebras[M].Dordrecht,Boston and London:Kluwer Academic Publishers,1995
  • 10[9]Marks G.A taxonomy of 2-primal rings[J].J.Algebra,2003,266:494-520

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部