摘要
设R是任意带单位元的结合环,specl(R)是弱Zariski拓扑空间。利用了环的素谱的一些拓扑性质去刻画Gelfand商环。对任意环R,N(R)表示环R的素根,证明了R/N(R)是Gelfand环当且仅当spec(R)∪maxl(R)是正规拓扑空间,当且仅当maxl(R)是spec(R)∪maxl(R)的保核收缩映射。
Let R be any associative ring with identity. Then specl (R) is a space with weak Zariski topology. In this paper, some Gelfand factor rings' equivalent conditions are proved by using some topological properties of rings. It is proved that if R is any ring and N(R ) is a prime radical of R, then R/N(R) is a Gelfand ring if and only if spec(R) ∪maxl(R) is a normal space, if and only if maxl(M) is a retract of spec(R)∪ maxl(R).
出处
《金陵科技学院学报》
2007年第2期1-4,共4页
Journal of Jinling Institute of Technology
基金
国家自然科学基金资助项目(10671137和10626012)
江苏省高校自然科学基金资助项目(06kjd110068)