期刊文献+

一类高阶微分方程边值问题正解的存在性 被引量:4

Positive solutions for higher order ordinary differential equation with boundary
下载PDF
导出
摘要 假设m2<(2n-1)(n-1)!f、(x,u)在[0,1]×[0,∞)非负连续,利用锥拉伸与压缩不动点定理证明了高阶微分方程边值问题u(n)+m2u+f(x,u)=0,u(k)(0)=u(1)=0,0≤k≤n-2正解的存在性。 The existence of positive solutions for higher order ordinary differential boundary with value problem as u^(n) + m^2u +f(x, u) =0, u^(k)(0) = u(1) = 0,0≤ k≤ n - 2 was proven when m^2 〈 (2n - 1) ( n - 1 ) ! and f( x, u) is non - negative consecutive. The positive solutions for higher order ordinary differential boundary with value problem were solved on the basis of the cone- fixed point theorem.
作者 暴宁伟
出处 《河北工程大学学报(自然科学版)》 CAS 2007年第2期108-110,共3页 Journal of Hebei University of Engineering:Natural Science Edition
关键词 共轭边值问题 格林函数 锥不动点定理 conjugate boundary with value problem Green functions the cone - fixed point theorem
  • 相关文献

参考文献6

二级参考文献14

  • 1蒋达清,东北师大学报,1996年,4期,6页
  • 2赵伟礼,吉林大学自然科学学报,1984年,2期,10页
  • 3Pei Minghe,Northeastern Mathematical Journal,1999年,15卷,121期
  • 4刘正荣,哈密顿系统与时滞微分方程的周期解,1996年
  • 5Deqing Jiang,Junjie Wei.Monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equation[J].Nonlinear Analysis,2002,50:885~898.
  • 6Deimling K.Nonlinear Analysis [M].New York:Springer-Verlag,1985.320~325.
  • 7DARIS J M,ELOE P W,HENDERSON J.Triple positive solutions and dependence on higher order derivatives[J].J Math Appl,1999,237:710-720.
  • 8DARIS J M,HENDERSON J.Triple positive symmetric sohctions for a Lidstone boundary value problem[J].Differential Equations Dynam Systems,1999,7:321-330.
  • 9DARIS J M,HENDERSON J,WONG P J Y.General Lidstone problems:multiplicity and symmetry of solutions[J].J Math Anal Appl,2000,251:527-548.
  • 10AERY R I.A generalization of the Leggett-Williams fixed point theorem[J].Math Sci Res Hot-Line,1999,3:9-14.

共引文献14

同被引文献38

  • 1李波,刘文斌.三阶非线性常微方程的周期边值问题[J].数学研究,2005,38(2):163-168. 被引量:1
  • 2周友明.Banach空间中二阶微分方程的周期边值问题[J].应用数学学报,2006,29(3):436-444. 被引量:11
  • 3罗治国,王卫兵.二阶微分方程反周期边值问题解的存在性[J].应用数学学报,2006,29(6):1111-1117. 被引量:4
  • 4郭大均.非线性泛函分析[M].济南:山东科技出版社,1995..
  • 5YAO QINGLIU.Positive solutions of nonlinear second-order periodic boundary value problems[J].Applied Mathamatics Letters,2007,20(5):583-590.
  • 6LAKSHMIKANTHAM V,LEELA S.Remarks on first and second order periodic boundary value problems[J].Nonlinear Analysis,1984,8(3):281-287.
  • 7CABADA A,NIETO J J.A generalization of the monotone iterative technique for nonlinear second-order periodic boundary value problems[J].J Math Anal Applc,1990,151(1):181-189.
  • 8LIU YUJI, GE WEIGAO. Solvability of nordocal boundary value problems for ordinary differential equations of higher order [ J ]. Nonlinear Anal, 2004, 57 (3) : 435 - 458.
  • 9LIU YUJI. Solvability of periodic boundary value problems for nthorder ordinary differential equations [ J ]. Appl. Math. Comput, 2006, 52(6/7) : 1 165 -1 182.
  • 10PALAMIDES P K. Multi point boundary value problems at resonance for n-order differential equations: positive and monotone solutions[J]. Electron. J. Differential equations, 2004, 2004 (2~) : 1 - 14.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部