期刊文献+

分形Hurst指数在彩虹期权定价中的应用(英文) 被引量:4

Applying Fractal Hurst Exponent to Pricing Rainbow Option
原文传递
导出
摘要 1991年Rubinstein把“彩虹”这个标签引入期权当中,他强调基于多种资产组合起来的期权就像五颜六色的彩虹一样,期权中的每一种标的资产可以用彩虹中的一种颜色来表示,即彩虹期权不但是一种基于多种标的资产的期权,而且也被当作是一种关联期权.交割时期权交割价格依赖于这些资产的综合表现.在讨论股票对数价格的动力学行为时引入分形中Hurst指数,并当Hurst指数取值于区间(1/2,1)时推导出相应的彩虹期权的定价公式. The Label rainbow was coined by Rubinstefin( 1991 ), who emphasizes that this option was based on a combination of various assets like a rainbow is a combination of various colors. More generally, rainbow options are multi-asset options, also referred to as correlation options. Rainbow can take various other forms but the combining idea is to have a pay-off that is depending on the assets sorted by their performance at maturity. Hurst exponents into the dynamics of stock log-price are introduced, and the corresponding rainbow option pricing formulas with Hurst exponents being in (1/2, 1) are deduced.
作者 厉大业 阮炯
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期156-167,共12页 Journal of Fudan University:Natural Science
关键词 BLACK-SCHOLES公式 分形 HURST指数 彩虹期权 Black-Scholes formula fractal Hurst exponent Rainbow option
  • 相关文献

参考文献15

  • 1Black F,Scholes M.The pricing of option and corporate liabilities[J].J Political Economy,1973,81:637-659.
  • 2Berg E,Lyhagen J.Short and long-run dependence in Swedish stock returns[J].Appl Financial Economics,1998,8:435-443.
  • 3Lo A W.Long-term memory in stock market prices[J].Econometrica.1991,59:1279-1313.
  • 4Hsieth D A.Chaos and non-linear dynamics:applications to financial market[J].J Finance,1991,46:1839-1877.
  • 5Huang B,Yang C W.The fractal structure in multinational stock returns[J].Appl Economics Lett,1995,2:67-71.
  • 6Lo A W,Mackinlay A C.Stock market prices do not follow random walks:evidence from a simple specification test[J].Rev Financial Stud,1988,1:41-66.
  • 7Elton E J,Gruber M J.Modern portfolio theory and investment analysis[M].New York:Wiley,1995.
  • 8Frennberg P,Hansson B.Testing the random walk hypothesis on Swedish stock prices:1919-1990[J].J Banking Finance,1993,17:175-191.
  • 9Fama E,French K.Permanent and temporary components of stock prices[J].J Political Economy,1988,96:245-273.
  • 10Poterba J,Summer L.Mean reversion in stock returns:evidence and implications[J].J Financial Economics,1988,22:27-60.

同被引文献28

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部