摘要
运用子流形理论从挠积角度研究了从实空间形式到四元欧氏空间的拉格朗日等距浸入,给出了实空间形式Mn(0)的挠积分解与相应的到四元欧氏空间的拉格朗日等距浸入之间的关系,构造了一个非平凡的适应拉格朗日等距浸入的实例.
Using the idea of twisted product, Lagrangian isometric immersions of a real space form into quaternion Euclidean spaces is investigated. The relationship between the twisted product of a real space form M^n (0) and the Lagrangian isometric immersions of M^n (0) into a quaternion Euclidean space is discussed with a nontrivial example of the adapted Lagrangian isometric immersions.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期175-183,共9页
Journal of Fudan University:Natural Science
关键词
拉格朗日等距浸入
挠积
四元欧氏空间
Lagrangian isometric immersion
twisted product
quaternion Euclidean space