期刊文献+

实空间形式到四元欧氏空间的Lagrangian等距浸入(英文)

Lagrangian Isometric Immersions of a Real Space Form M^n(0) into a Quaternion Euclidean Space H^n
原文传递
导出
摘要 运用子流形理论从挠积角度研究了从实空间形式到四元欧氏空间的拉格朗日等距浸入,给出了实空间形式Mn(0)的挠积分解与相应的到四元欧氏空间的拉格朗日等距浸入之间的关系,构造了一个非平凡的适应拉格朗日等距浸入的实例. Using the idea of twisted product, Lagrangian isometric immersions of a real space form into quaternion Euclidean spaces is investigated. The relationship between the twisted product of a real space form M^n (0) and the Lagrangian isometric immersions of M^n (0) into a quaternion Euclidean space is discussed with a nontrivial example of the adapted Lagrangian isometric immersions.
作者 徐翔
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期175-183,共9页 Journal of Fudan University:Natural Science
关键词 拉格朗日等距浸入 挠积 四元欧氏空间 Lagrangian isometric immersion twisted product quaternion Euclidean space
  • 相关文献

参考文献6

  • 1Frédéric H,Pascal R.Weierstrass represenation of Lagrangian surfaces in four-dimensional space using spinors and quaternions[J].Commentarii Mathematici Helvetici,2000,75(4):668-680.
  • 2Oh Y M,Kang J H.The explicit formula of flat Lagrangian H-umbilical submanifolds in quaternion Euclidean spaces[J].Mathematics Journal of Toyama University,2004,27(1):438-447.
  • 3Hong Y,Houh C S.Lagrangian submanifolds of quaternion Kaehlerian manifolds satisfying Chen's equality[J].Beitrge Algebra Geometry,1998,39(1):413-421.
  • 4Oh Y M,Kang J H.Lagrangian H-umbilical submanifolds inquaternion Euclidean spaces[J].Tsukuba Journal of Mathematics,2005,29(1):233-246.
  • 5Chen B Y,Dillen F,Verstraelen L,et al.Lagrangian isometric immersions of a real-space-form M^n(c) into a complex-space-form M^n(4c)[J].Mathematical Proceedings of the Cambridge Philosophical Society,1998,124(2):107-125.
  • 6Oh Y M.Explicit constructions of Lagrangian isometric immersion of a real space form Mn(c) into a complex-space-form M^n(4c)[J].Mathematical Proceedings of the Cambridge Philosophical Society,2002,132(3):481-508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部