期刊文献+

有理三次PH曲线的G^1 Hermite插值 被引量:2

G^1 Hermite Interpolation by Rational Pythagorean Hodograph Cubics
原文传递
导出
摘要 探讨了有理PH曲线的G1 Hermite插值问题,运用复数表达将问题转化为包含5个复代数方程的方程组,通过求解这个方程组,得到结论:当插值条件形成凸多边形时,插值问题有2个解,其中之一为多项式解;而当插值条件形成非凸多边形时,只有切方向满足一定条件时,插值问题才有一个解.而对于后一种情况,总可以通过加点的方式细分原逼近曲线,进而得到由两段有理三次PH曲线G1拼接而成的4组样条插值曲线. The G^1 Hermite interpolation by Rational Pythagorean Hodograph Cubics is discussed. By means of complex representation the problem is transformed to a system of complex equations with 5 complex algebraic equations. By solving this system, the following results are obtained. There are 2 solutions(especially one is a polynomial solution), when the conditions form a convex polygon. And with the concave polygon conditions, there is no solution unless the tangents satisfy some special conditions. But four solutions constituted with two G^1 PH rational cubic segments always can be got by means of adding points between the former extreme points.
作者 潘俊
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期184-191,共8页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(10125102)
关键词 PH曲线 有理参数曲线 G^1 HERMITE插值 NURBS 有理三次PH样条曲线 PH curves rational curves G^1 Hermite interpolation NURBS rational cubic PH spline curves
  • 相关文献

参考文献10

  • 1Maekawa T.An overview of offset curves and surfaces[J].Computer Aided Geometric Design,1999,31:165-173.
  • 2吴宗敏 黄毅.参数有理三次GC^2Hermite插值[J].高等学校计算数学学报(计算几何专集),1993,:98-103.
  • 3Pottmann H.Rational curves and surface with rational offsets[J].Computer Aided Geometric Design,1995,12:175-192.
  • 4Lü W.Offsets rational parametric plane curves[J].Computer Aided Geometric Design,1995,12:601-616.
  • 5Choi H I,Lee D S,Moon H P.Clifford algebra,spin representation,and rational parameterization of curves and surfaces[J].Advances in Computational Mathematics,2002,17:5-48.
  • 6Farouki R T,Kandari M,Sakkalis T.Hermite interpolation by rotation invariant spatial Pythagorean Hodograph curves[J].Advances in Computational Mathematics,2002,17:369-383.
  • 7Juttler B,Murer C.Cubic Pythagorean Hodograph spline curves and applications to sweep surface modeling[J].Computer Adied Design,1999,31:73-83.
  • 8Pelosi F,Farouki R T,Manni C,et al.Geometric Hermite interpolation by spatial Pythagorean Hodograph cubics[J].Advances in Computational Mathematics,2005,5:325-352.
  • 9Farouki R T,Neff C A.Hermite interpolation by Pythagorean Hodograph quintics[J].Mathematics of Computation,1995,64:1589-1609.
  • 10Farin G Curves and surfaces for Computer Aided Geometric Design:a practical guide[M].Boston:Academic Press,1990.

共引文献2

同被引文献15

  • 1郑志浩,汪国昭.OR插值曲线构造及Bézier曲线逼近[J].计算机辅助设计与图形学学报,2006,18(3):366-371. 被引量:5
  • 2马元魁,张天平,康宝生.C^1插值平面三次PH样条的构造[J].西安工业大学学报,2007,27(1):34-37. 被引量:2
  • 3G ELBER, I K LEE, M SKIM. Comparing Offset Curve Approximation Methods [ J ]- IEEE Computer Graphics and Applicaions,1997, 17(3) :62 -71.
  • 4Q WANG, J Q TAN. Rational Quartic Spline Involving Shape Parameters[J]. Journal of Information and Com- putational Science, 2004,1 ( 1 ) : 127 - 130.
  • 5FARIN G. Curves and surfaces for computer aidedgeo-met-ric design[M]. New York: Academic Press, 1996.
  • 6FARIN G. Geometric Hermite interpolation with circularprecision [ J ]. Computer-Aided Design, 2008,40 ( 4 ):476-479.
  • 7DE BOOR C,HOLLIN K, SABIN M. High accuracy geo-metric Hermite interpolation[J]. Computer Aided Geomet-ric Design, 1987,4(4): 269-278.
  • 8DEGEN W L F. High accurate rational approximation ofparametric curves [J]. Computer Aided Geometric Design1993,10(3/4).293-313.
  • 9SAKAI M. Osculatory interpolation [J]. Computer AidedGeometric Design,2001,18(8) : 739-750.
  • 10WALTON D J,MEEK D a G2 Hermite interpolation withcircular precision[J]. Computer-Aided Design,2010,42(9):749-758.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部