摘要
提出了一种新的演化神经网络算法GTEANN,该算法基于高效的郭涛算法,同时完成在网络结构空间和权值空间的搜索,以实现前馈神经网络的自动化设计。本方法采用的编码方案直观有效,基于该编码表示,神经网络的学习过程是一个复杂的混合整实数非线性规划问题,例如杂交操作包括网络的同构和规整处理。初步实验结果表明该方法收敛,能够达到根据训练样本自动优化设计多层前馈神经网络的目的。
A new method of evolutionary neural networks,called evolutionary neural networks based GT algorithm (GTEANN),is proposed in this study.ln this method,GT algorithm is used to simultaneousely search the satisfied structure and weights for feedforward neural networks.A straightforward effective encoding scheme for feedforward neural networks is adopted and only crossover operators are used with special topological isomorphism and regularization process.The learing process of network is a complex mixed-integer nonlinear optimization problem.The initial results of experiments indicate that GTEANN can automatically design and optimaize neural networks using the training sets.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第20期43-45,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60133010)
中国地质大学(武汉)优秀青年教师资助计划资助项目(No.CUGQNL0628
No.CUGQNL0640)
关键词
演化神经网络
郭涛算法
网络同构和规整
Evolutionary Neural Networks
GT algorithm
topological isomorphism and regularization