摘要
将聚类网络用于非监督的图像分割,提出了竞争层神经元的动态调整机制和返回式的非重复训练学习方案,实现了聚类数的自适应增加,解决了随机生成权值矩阵产生的死点问题,提高了算法的收敛性能。实验结果表明,改进的聚类网络的图像分割结果优于C-均值聚类算法和通常的聚类网络。
This paper applies the clustering neural network to unsupervised image segmentation.The automatic mechanism of nerve cell and recurrent non-repeating training scheme are proposed to implement the adaptive adding of the clustering number, solve the dead center of stochastic weighted matrix,and improve the convergence.Experiments show that our improved clustering neural network is better than C-mean algorithm and the accustomed clustering network to segment images.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第20期93-95,共3页
Computer Engineering and Applications
基金
航空基础科学基金(No.03I53062)
关键词
聚类神经网络
图像分割
C-均值算法
clustering neural network
image segmentation
C-mean algorithm