期刊文献+

WIMMC:加权的增量式极大边界准则算法

WIMMC:weighted incremental maximum margin criterion
下载PDF
导出
摘要 一些经典降维算法并不是最优的降维策略,它们不再适用于流形式且大尺度的Web文本数据,因此提出了一种加权的增量式有监督的降维算法,称为加权的增量式极大边界准则(Weighted Incremental Maximum Margin Criterion,WIMMC)。WIMMC通过加权得到比传统算法更好的结果,而且可以增量地有监督地处理大尺度的Web文本数据。给出了算法的收敛性证明和一些实验,并从实验结果可以看出,通过WIMMC降维之后的分类效果比其他降维算法更有效。 Some traditional algorithms can no longer deal with the streaming text data,so this paper proposes a weighted incre mental supervised algorithm,called Weighted Incremental Maximum Margin Criterion(WIMMC) to reduce the dimensionality.WIMMC can supervised incrementally handle large-scale text data and improve the performance of following classification procedure.The paper proves the convergence of the algorithm and gives experiments to show that WIMMC can more effectively improve following classification than other dimensionality reduction algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第20期96-100,共5页 Computer Engineering and Applications
关键词 主成分分析 线性判别分析 极大边界准则 加权 Principal Component Analysis(PCA) Linear Discriminant Analysis(LDA) Maximum Margin Criterion(MMC) weighted
  • 相关文献

参考文献11

  • 1Artae M,Jogan M,Leonardis A.Incremental PCA for on-line visual learning and recognition[C]//Proceedings of the 16th International Conference on Pattern Recognition,Quebec City,QC,Canada,2002:781-784.
  • 2Balakrishnama S,Ganapathiraju A.Linear discriminant analysis-a brief tutorial.Institute for Signal and Information Processing,MS,1998.
  • 3Jolliffe I T.Principal component analysis[M].[S.l.]:Springer-Verlag,1986.
  • 4Yan Jun,Zhang Ben-yu,Yan Shui-cheng,et al.IMMC:Incremental Maximum Margin Criterion[C]//KDD'04,Seattle,Washington,USA Copyright 2004 ACM,August 22-25,2004.
  • 5Yan Jun,Cheng Qian-sheng,Yang Qiang,et al.An incremental subspace learning algorithm to categorize large scale text data[C]//LNCS 3399:Proceedings of 7th Asia-Pacific Conference on Web Technologies Research and Development,APWeb 2005,2005:52-63.
  • 6Kushner H J,Clark D S.Stochastic approximation methods for constrained and unconstrained systems[M].New York:Springer-Verlag,1978.
  • 7Li H,Jiang T,Zhang K.Efficient and robust feature extraction by maximum margin criterion[C]//Proceedings of the Advances in Neural Information Processing Systems 16,Vancouver,Canada,2004.[S.l.]:MIT Press.IEEE Transactions on Neural Networks,2006,17 (1):157-165.
  • 8Liu R-L,Lu Y-L.Incremental context mining for adaptive document classification[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Edmonton,Alberta,Canada,2002:599-604.
  • 9Weng J,Zhang Y,Hwang W S.Candid covariance-free incremental principal component analysis[J].IEEE Trans Pattern Analysis and Machine Intelligence,2003,25 (8):1034-1040.
  • 10Yu H,Yang J.A direct LDA algorithm for high-dimensional data with application to face recognition[J].Pattern Recognition,2001,34 (10):2067-2070.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部