期刊文献+

密度泛函方法研究Ru_n(n=9~26)金属团簇

Density Functional Study on Ru_n(n=9~26) Metal Clusters
下载PDF
导出
摘要 采用密度泛函理论中的广义梯度近似(DFT/GGA)方法,对Ru。团簇(n=9-26)的几何结构与稳定性、团簇表面的Ru与内部Ru间相互作用进行了研究。结果表明:将金属团簇体系放大后,基态稳定结构的原子平均束缚能Eh随着团簇尺寸的增大而增大,当原子数n=26时,Eb=-6.69eV,与大块金属的Eh(-6.74eV)接近,表明其已接近大块金属的性质;Ru26的平均间距R=2.65A,与理论值2.70A和实验值2.704A相近;平均配位数CN随着n值的增大而增大,呈现收敛于块体值的趋势。另外,由于大块金属表面的原子不能与足够的原子配位形成饱和的配位结构,所以其上的电子向内层原子转移,使得内层Ru原子呈负电荷,而外层原子呈正电荷,最终导致内层原子之间的相互作用增强而导致键的收缩。外层原子之间键的减弱,从而出现所谓的“驰豫效应”。 In this paper, the geometry, stability, interaction between surface and inner Ru atom of Run clusters are investigated by Density Functional Theory (DFF). The average atom binding energy increases with the increase of the atom number for magnified metal clusters. When n = 26, the binding energy which is comparable to that of bulk metals(-6.74eV) is -6.69eV, which indicates that the binding energy approaches to the property of bulk metals; The average bond distance is 2.65A, which is close to theoretic(2.70A) and experimental values(2.70A); The average coordination number(CN) presents the trend of convergence to bulk metals. The lack of coordinative saturation for the exterior atoms of the cluster implies that some electrons, which in the bulk metal would be involved in bonding interactions with atoms that are absent in the cluster, are free to migrate to the central atom, which make the central Ru atoms have negative effective charges and surface Ru atoms have positive charge in all clusters, results in the appearance of relaxation effect.
作者 王芳
出处 《贵金属》 CAS CSCD 2007年第3期47-50,70,共5页 Precious Metals
关键词 物理化学 密度泛函 RU 团簇 结构稳定性 电子结构 physicochemistry DFT Ru clusters stability electron configuration
  • 相关文献

参考文献10

  • 1Guirado-López R,Spanjaard D,Desjonquères M C,et al.Electronic and geometrical effects on the magnetism of small RuN clusters[J].Magnetism and Magnetic Materials,1998,186:214-222.
  • 2涂学炎,王登武,陈秀敏.Run(n=2~8)金属团簇的结构和能级分布的DFT研究[J].Chinese Journal of Structural Chemistry,2004,23(8):940-945. 被引量:2
  • 3Parr R G,Yang W.Density-functional Theory of Atoms and Molecules[M].Oxford:Oxford Univ.Press.,1989.
  • 4Labanowski J K,Andzelm J W.Density Functional Methods in Chemistry[M].New York:Springer-Verlag,1991.
  • 5Andzelm J,Wimmer E.Density functional gaussian typeorbital approach to molecular geometries,vibrations,and reaction energies[J].Chem.Phys.,1992,96:1280-1303.
  • 6Vosko S J,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis[J].Can.J.Phys.,1980,58:1200-1211.
  • 7Li T,Balbuena P B.Computational studies of the interactions of oxygen with platinum clusters[J].Phys.Chem.B,2001,105:9943-9952.
  • 8Jinlong Yang,Kaiming Deng,Chuanyun Xiao,et al.The low-spin and high-spin states of Ru13 clusters[J].Phys.Lett.A,1996,212:253-257.
  • 9Chiarotti G,Landolt-Bornstein.Physics of Solid Surface:Electronic and Vibration Properties,New Series,Group Ⅲ[M].Springer-Verlag,1994.24.
  • 10M.ComcepciOn Sanchez Sierra,Joaquin García Ruiz,M.Grazia Proietli,et al.Catalytic and structural properties of ruthenium monometallic and bimetallic catalysts:characterization by EXAFS and XRD[J].Mol.Catal.A:Chemical,1995,96:65-75.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部