摘要
使用支持向量机和人工神经网络两种方法,分别建立了天空云量的预报模型。利用2001年5月1日~2004年12月31日的武汉市地面、高空观测值及欧洲中心的24小时预报场等资料,通过按不同比例随机抽取样本进行交叉验证的方法,分析了SVM和ANN模型的预报能力和鲁棒性;然后再用全部样本资料建立预报模型,来预报2005年1月1日~5月31日武汉市天空云量。交叉验证和实例预报的结果显示:虽然SVM和ANN模型都表现了较好的预报能力,但SVM的预报能力高于ANN方法,且在计算速度上有ANN无法比拟的优势。
The cloud amount forecast is carried out based on SVM and ANN methods, and comparisons are made between the two methods. Using the surface and high-level observations in Wuhan and numerical forecast field from ECMWF during May 1^st 2001 to December 31^st 2004, cross-validations are performed with random samples in different proportion. It shows that both models are able to forecast cloud amount with robustness. And then the models are rebuilt with the whole sample data to forecast the cloud amount in Wuhan from January 1^st to May 31^st 2005. Cross-validations and real time forecast reveal that SVM is better than ANN in the ability of forecasting cloud amount, especially in computing speed.
出处
《热带气象学报》
CSCD
北大核心
2007年第3期255-260,共6页
Journal of Tropical Meteorology
基金
"精细化气象要素预报业务系统"
"中国气象局数值模式创新基地"开放课题
国家自然科学基金(60072006)共同资助
关键词
支持向量机
人工神经网络
模型
天空云量
预报
Support Vector Machine(SVM)
Artificial Neural Network(ANN)
Model Cloud amount
Forecast.