摘要
设图G=(V,E).一子集DV,若对任何XV-D,都存在一个非空子集YD,使得导出子图〈X∪Y〉连通,则称D为G的集控制集(sd-集).G的集控制数γs(G)是G的集控制集的最小基数.基数为γs(G)的集控制集称为G的最小集控制集.本文讨论了割点属于G的任一最小集控制集的必要条件,并且给出了G有独立集控制集的充要条件.
Let G(V,E) be a graph.A set DV is a set dominating set(sd set)if for every set XV-D ,there exists a nonempty set YD ,such that the subgraph〈 X∪Y 〉induced by X∪Y is connected.The set domination number γ s( G )is the minimum cardinality of a sd set.In this paper,a necessary condition that a cut vertex belongs to every γ s set of G is discussed,and a necessary and sufficient condition of existing indepedent set dominating set in G is given.
出处
《华东交通大学学报》
1997年第1期79-82,共4页
Journal of East China Jiaotong University
基金
江西省自然科学基金
关键词
图
集控制集
最小集控制集
独立集控制集
graph
set dominating set
cut vertex
minimum set dominating set
indepedent set dominating set