期刊文献+

Vasicek利率模型下欧式未定权益定价方法 被引量:2

Study on pricing of European contingent claims when the interest rate obeys the Vasicek model
下载PDF
导出
摘要 文章在利率服从Vasicek模型的假设条件下,对欧式未定权益的定价方法进行探讨。综合考虑到利率的动态变化性,在推导未定权益定价的方程时,对标的物价格,时间和利率3个变量同时进行求导,最后得到关于欧式未定权益定价的新的偏微分方程。 This paper deals with pricing of the European contingent claims when the interest rate obeys the Vasicek model. The dynamic variablity of the interest rate is considered synthetically in deducing the differential equation, and the derivative concerning time, the underlying goods' price and the interest rate is given, thus obtaining a new partial differential equation for European contingent claims.
作者 张燕 杜雪樵
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期791-793,共3页 Journal of Hefei University of Technology:Natural Science
关键词 Vasicek利率 欧式未定权益 ITO公式 Black-Scole偏微分方程 Vasicek interest rate European contingent claim Ito formula Black-Scholes partial differential equation
  • 相关文献

参考文献9

  • 1Black F,Scholes M.The pricing of options and corporate liablities[J].Journal of Political Economy,1973,81:33-55.
  • 2John C H.Options,futures and other derivatives[M].4th ed.Upper Saddle River:Prentice Hall,1998:1-100.
  • 3Aase K K.Contingent claims valuation when the security price is combination of an it process and a random point process[J].Stochastic Processes and Their Application,1998,28(2):185-220.
  • 4Merton M C.Continuous-time finance[M].Cambridge M A:Blackwell Publishers,1990:50-80.
  • 5Kallsen J.Optimal portfolios for exponential Levy processes[J].Math Meth Oper Res,2000,51(3):357-374.
  • 6Chapman D A,Pearson N D.Recent advances in estimating term-structure model[J].Financial Analysis Journal,2001,57(4):77-95.
  • 7刘文平,李萍,孙志华.利率服从马尔可夫过程时的期权定价[J].华中师范大学学报(自然科学版),2004,38(2):153-155. 被引量:8
  • 8傅曼丽,董荣杰,屠梅曾.动态利率模型估计方法的一个实证检验[J].华中科技大学学报(自然科学版),2005,33(4):97-100. 被引量:6
  • 9Baz J,Chacko G.Financial deribatives:pricing,applications,and mathematics[M].北京:北京大学出版社,2005:222-223.

二级参考文献12

  • 1[1]John C H. Options,Futures and Other Derivatives (Fourth Edition)[M]. Upper Saddle River: Prentice Hall, 1998.
  • 2[2]David G L. Investment Science[M]. New York, Oxford: Oxford University Press, 1998.
  • 3[3]Das S R. Revisiting Markov chain term structure models: extensions and applications[J]. Financial Practice and Education, 1996, 6(1): 33~45.
  • 4[4]Chapman D A, Pearson N D. Recent advances in estimating term-structure models[J]. Financial Analysts Journal, 2001, 57(4): 77~95.
  • 5[5]Hong Yan. Dynamic models of the term structure[J]. Review of Financial Studies, 2001, 57(4): 60~75.
  • 6[6]Hideyuki T, Isao S. Approximation of nonlinear term structure models[J]. The Journal of Derivatives, 2001, 43(3): 44~51.
  • 7[7]Dwight G, Gautam V. An analytical implementation of the Hull and White Model[J]. The Journal of Derivatives, 2001, 44(2): 54~60.
  • 8[8]Dixit A K, Pindyck R S. Investment Under Uncertainty[M]. Princeton: Princeton University Press, 1994.
  • 9Chan K C. An empirical comparison of alternative model of the short-term interest rate[J]. Journal of Finance, 1992, 47: 1209-1227.
  • 10Hansen L P. Large sample properties of generalized method of moments estimators[J]. Econometrica, 1982, 50: 1029-1054.

共引文献12

同被引文献18

  • 1姚落根,王雄,杨向群.Vasicek利率模型下几何亚式期权的定价[J].湘潭大学自然科学学报,2004,26(3):20-23. 被引量:7
  • 2Black F, Scholes M. The pricing of options and corporate liablities[J]. Journal of Political Economy, 1973, 81 (3) : 637--654.
  • 3Hull J C. Options, futures and other derivatives[M]. 4th ed. Upper Saddle River : Prentice Hall, 1998: 1-- 100.
  • 4Merton M C. Continuous-time finace[M]. Cambridge, MA:Blackwell Publishers, 1976 : 50-- 80.
  • 5Karatzas I, Shreve S E. Brown motion and stochastic calculus[M]. New York: Springer-Verlag, 1991:100--200.
  • 6Shreve S E. Stochastic calculus for finance: continuoustime models [M]. New York:Springer-Verlag, 2004: 198--210.
  • 7Musiela M, Rutkowski M. Martingale methods in financial modelling [M]. New York: Springer-Verlag, 2003:110--116.
  • 8Harrison J M, Pliska S R. Martingales and stochastic integrals in the theory of continuous trading[J]. Stochastic Process and Their Applications,1981,11(4) :215--260.
  • 9Lamberton D, Lapeyre B. Introdution to stochastic calculus applied to finance[M]. Chapman and Hall, 1996: 137--138.
  • 10Black F, Scholes M. The pricing of options and corporate liablities [J]. Journal of political Economy, 1973, 81:33-55.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部