期刊文献+

空间分数阶扩散方程的超线性收敛离散格式 被引量:4

Numerical Approximate to the Space-time Fractional Diffusion Equation with Modified Variational Iteration Method
下载PDF
导出
摘要 考虑了空间分数阶扩散方程的数值解,构造了一个隐式差分离散格式,证明了此格式是无条件稳定的,且关于空间步长是超线性收敛的.最后,给出一个数值例子说明本文的理论分析是正确的,所构造的离散格式是有效的. The space fractional order diffusion equation is considered. A implicit difference scheme is constructed, which is uncon- ditionally stable and convergent. The convergent order is superlinear about space step. FinaUy,one example is presented to show that the numerical analysis is right and the method is feasible and efficient.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期464-468,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271098) 澳大利亚国家研究基金(LP0348653) 福建省教育厅科技基金(JB04038)资助
关键词 空间分数阶扩散方程 CAPUTO导数 Riemann-Liouville分数阶导数 积分 space fractional diffusion equations Caputo derivatives Riemann-Liouville derivative^integral
  • 相关文献

参考文献2

二级参考文献11

  • 1F. Huang,F. Liu.The fundamental solution of the space-time fractional advection-dispersion equation[J].Journal of Applied Mathematics and Computing (-).2005(1-2)
  • 2Meerschaert M,Benson A D,Scheffler H P,Baeumer B.Stochastic solution of space-time fractional diffusion equations[].Physical Review.2002
  • 3Liu F,Anh V,Turner I.Numerical solution of space fractional Fokker-Planck equation[].J Comp and Appl Math.2004
  • 4Mainardi F,Luchko Y,Pagnini G,Paradisi G.The Fundamental solution of the space-time fractional diffusion[].Frac Calc Appl Anal.2001
  • 5Liu F,Anh V,Turner I.Numerical Solution of the Space Fractional Fokker-Planck Equation[].ANZIAM J.2004
  • 6Fix J G,Roop P J.Least squares finite element solution of a fractional order two-point boundary value problem[].Computers and Mathematics With Applications.2004
  • 7Liu F,Shen S,Anh V,Turner I.Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation[].ANZIAM J.2005
  • 8Meerschaert M,Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations[].J Comp and Appl Math.2004
  • 9Smith G D.Numerical solution of partial differential equations: finite difference methods (third edition)[]..1985
  • 10Gorenflo R,Mainardi F,Moretti D.etc, Discrete random walk models for space-time fractional diffusion[].The Journal of Chemical Physics.

共引文献16

同被引文献19

  • 1蔡新,陈景华.分数阶常微分方程的数值解法[J].集美大学学报(自然科学版),2007,12(4):367-370. 被引量:4
  • 2张淑琴.有限区间上的分数阶扩散波方程的解[J].西北师范大学学报(自然科学版),2005,41(2):10-13. 被引量:6
  • 3卢旋珠,刘发旺.时间分数阶扩散-反应方程[J].高等学校计算数学学报,2005,27(3):267-273. 被引量:8
  • 4Wyss W. The fractional diffusion equation [ J ]. Journal of Mathematical Physics, 1986, 27 ( 11 ) : 2 782 - 2 785.
  • 5Schneider R W, Wyss W. Fractional diffusion and wave equations[J]. Journal of Mathematical Physics, 1989, 30 (1) : 133 - 144.
  • 6Liu Fawang, Anh V, Turner I, et al. Time fractional advection -dispersion equation[J]. Journal of Applied Mathematics and Computing, 2003, 13(1/2): 233-245.
  • 7Zhuang Pinghui, Liu Fawang. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics and Computing, 2006, 22(3) : 87 -99.
  • 8Weilbeer M. Efficient numerical method for fractional differential equations and their analytical background [ D ]. Brunswick: Technische Universitat Braunschweig, 2005: 64- 177.
  • 9刘保柱,苏彦华,张宏林.MATLAB7.0从入门到精通[M].北京:人民邮电出版社,2006.
  • 10张晓娟,刘发旺.求解一维非齐次分数阶扩散-波动方程的混合边值问题[J].福州大学学报(自然科学版),2007,35(4):515-519. 被引量:3

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部