摘要
对于反常次扩散的一个物理-数学逼近是基于一个包含分数阶导数的一般扩散方程.分数阶核方程已经证明在反常慢扩散(次扩散)情况下特别有用.但是,有效的求解非线性反常次扩散方程的方法仍然处于初期阶段.文中对非线性反常次扩散方程进行了研究,利用Adomian分解方法构造一个近似解,并给出一些数值例子来说明这个方法的有效性和简单性.
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. Fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion(subdiffusion). However,effective methods for the non-linear anomalous subdiffusion equation(NA-SubE) are still in their infancy. In this paper,NA-SubE was considered and an approximate solution was constructed by using Adomian decomposition method. Some examples were presented to show the efficiency and simplicity of the haethod.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期469-473,共5页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(10271098)资助