期刊文献+

利用Adomian分解方法求非线性反常次扩散方程近似解 被引量:2

An Approximate Solution for the Non-linear Anomalous Subdiffusion Equation Using the Adomian Decomposition Method
下载PDF
导出
摘要 对于反常次扩散的一个物理-数学逼近是基于一个包含分数阶导数的一般扩散方程.分数阶核方程已经证明在反常慢扩散(次扩散)情况下特别有用.但是,有效的求解非线性反常次扩散方程的方法仍然处于初期阶段.文中对非线性反常次扩散方程进行了研究,利用Adomian分解方法构造一个近似解,并给出一些数值例子来说明这个方法的有效性和简单性. A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. Fractional kinetic equations have proved particularly useful in the context of anomalous slow diffusion(subdiffusion). However,effective methods for the non-linear anomalous subdiffusion equation(NA-SubE) are still in their infancy. In this paper,NA-SubE was considered and an approximate solution was constructed by using Adomian decomposition method. Some examples were presented to show the efficiency and simplicity of the haethod.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期469-473,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10271098)资助
关键词 非线性反常次扩散方程 Adomian分解方法IRiemann-Liouville分数阶导数 nonlinear anomalous subdiffusion equation Adomian decomposition method~ Riemann-Liouville fractional derivative
  • 相关文献

参考文献18

  • 1Podlubny I.Fractional differential equations[M].New York:Academic Press,1999.
  • 2Metzler R,Klafter J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339:1-77.
  • 3Yuste S B,Lindenberg K.Subdiffusion limited A+A reactions[J].Phys Rev Lett,2001,87(11):118-301.
  • 4Yuste S B,Lindenberg K.Subdiffusion-limited reactions[J].Chem Phys,2002,284:169-180.
  • 5Meerschaert M M,Benson D A,Bumer B.Multidimensional advection and fractional dispersion[J].Physical Review E,1999,59:5026-5028.
  • 6Meerschaert M M,Benson D A,Scheffler H P,et al.Stochastic solution of space-time fractional diffusion equations[J].Physical Review E,2002,65:1103-1106.
  • 7Baeumer B,Meerschaert M M,Mortensen J.Space-time fractional derivative operators[J].Proceedings of the American Math Society,2005,133(8):2273-2282.
  • 8Liu F,Anh V,Turner I.Numerical solution of space fractional Fokker-Planck equation[J].Journal of Computational and Applied Mathematics,2004,166:209-219.
  • 9Meerschaert M,Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations[J].Journal of Computational and Applied Mathematics,2004,172:65-77.
  • 10Zhuang P,Liu F.Implicit difference approximation for the time fractional diffusion equation[J].J Appl Math Computing,2006,22(3):87-99.

同被引文献43

  • 1朱永贵,高小山.计算Adomian多项式的新算法[J].系统科学与数学,2005,25(1):18-28. 被引量:6
  • 2王学彬.求解多项分数阶常微分方程的数值方法[J].南平师专学报,2006,25(4):14-19. 被引量:2
  • 3黄力,李显方.分数阶积分微分方程的近似解[J].数学理论与应用,2007,27(1):88-91. 被引量:7
  • 4Rafei M,Ganji D D. Explicit Solutions of Helmholtz Equation and Fifth-order KdV Equation using Homotopy Perturbation Method [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2006,7 (3) : 321-329.
  • 5康玉,张晓丹.两类分数阶微分方程的近似解析解与数值解[M].北京:北京科技大学出版.2008:12-17.
  • 6于弦.分数阶反应-扩散方程的数值近似[D].厦门:厦门大学数学科学学院,2007.
  • 7PODLUBNY I. Fractional differential equations[M]. New York:Academic Press, 1999.
  • 8BAGLEY R. L. A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of R.heology, 1983(27):201 - 210.
  • 9FRIEDRACH C H R. Relaxation and retardation function of the Maxwell model with fractional derivatives [J].Rheologica Acta, 1991(30): 151 - 158.
  • 10TAN WC, PAN WX, XU MY. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. International Journal of Non-Linear Mechanics, 2003(38): 645 - 650.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部