期刊文献+

基于独立成分分析的复杂光谱的定量分析 被引量:4

A Quantitative Analysis for Complicated Spectra Based on Independent Component Analysis
原文传递
导出
摘要 基于独立成分分析(ICA)算法,对超短脉冲激光与气体相互作用所产生的复杂的非线性荧光光谱数据进行了有效的特征提取,进而对空气中含有的3种杂质气体在不同浓度下的光谱进行了预测,得到的结果与实测值相比较误差很小。对这3种气体共计27组光谱数据进行浓度值的定量预测,达到了满意的实验结果。 A quantitative analysis and feature extraction approach based on independent component analysis(ICA) is proposed to analyze the complicated nonlinear fluorescent spectra induced by nonlinear interactions of femto-second(fs) laser pulses with compound gas medium through,which the laser pulses transmit. The spectra of different impurity concentration predicted by using the extracted features show a low error compared with the experimental values. The results of a quantitative analysis for the impurity concentration of twenty seven sets of spectra data are satisfying.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2007年第6期741-745,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60277022 60477009) 教育部博士点基金资助项目(20030055022) 天津市科技攻关培育资助项目(043100811) 南开大学科技创新基金资助
关键词 非线性荧光光谱 独立成分分析(ICA) 特征提取 气体识别 nonlinear fluorescent spectra independent component analysis feature extraction gas component recognition
  • 相关文献

参考文献7

二级参考文献34

  • 1张勇,刘君华,吴浩扬,陈志平.基于遗传神经网络的电子鼻在大气环境气体模式识别中的应用[J].仪器仪表学报,2001,22(z2):225-226. 被引量:7
  • 2申金媛,韩应哲,常胜江,张延炘,罗琦,陈瑞良.非线性荧光光谱的神经网络分析及其应用[J].光学学报,2004,24(7):1000-1003. 被引量:15
  • 3李素梅,张延,常胜江,申金媛,李宜宾,王立.基于SVM实现人眼注视与否的探知[J].光电子.激光,2004,15(10):1229-1233. 被引量:10
  • 4F. Evangelisti, A. Baroncelli, P. Bonasoni et al.. Differential optical absorption spectrometer for measurement of tropospheric pollutants[J]. Appl. Opt., 1995, 34(15): 2737-2744.
  • 5N. Akozbek , M. Scalora , C. M. Bowden et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Opt. Commun. , 2001, 191(3) :353-362.
  • 6Simon Haykin. Neural Networks : A Comprehensive Foundation(second edition)[M]. Beijing, Tsinghua University Press, 2001.318-350.
  • 7Lindsay I. Smith. A Tutorial on Principal Components Analysis[R], 2002. 1-27.http: // kybele. psych. cornell, edu/~ edelman/Psych-465 Spring-2003/PCA-tutorial. pdf.
  • 8Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: an application to face detection[C]. In Proc. of CVPR '97, Purrto Rico, 1997. 1-8.
  • 9Bernd Heisele, Purdy Ho, Tomaso Poggio. Face Recognition with Support Vector Machines: Global versus component -based approach, http: //cbcl. mit. edu/projects/ebcl/publications/ps/iccv2001, pdf.
  • 10Corinna Cortes, Vladimir Vapnik. Support vector networks,machine learning[J]. 1995, 20(3) : 273-297.

共引文献36

同被引文献28

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部