摘要
设P是一个域,Г是满足{aEij︱i,j=2,…,n,a∈P}ГMn(P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群。本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。由此刻画了Г的保迹反乘法映射。
Suppose P is a field, let F be multiplicative semigroup which satisfies {aEy|i,j=2,…,n,a∈P} lohtain in Г lohtain in Mn(P), where Mn(P) denotes the semigroup of all n x n matrices over P. In this paper, we prove a result: suppose f:Г→Mn(P)is a anti -multiplicative map that preserve trace, then there exists an inverti- ble S∈Mn(P) which form f(A)=SA^TS^-1,YA∈Г.
出处
《孝感学院学报》
2007年第3期45-47,共3页
JOURNAL OF XIAOGAN UNIVERSITY
基金
湖北省教育厅科研项目(D200626001)
关键词
矩阵代数
迹
乘法映射
反乘法映射
matrix algebra
trace
multiplicative map
anti - multiplicative map