期刊文献+

保持矩阵迹的反乘法映射

Anti-Multiplicative Maps on Matrices that Preserve the Trace
下载PDF
导出
摘要 设P是一个域,Г是满足{aEij︱i,j=2,…,n,a∈P}ГMn(P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群。本文证明了一个结果:若f:Г→Mn(P)是一个保迹反乘法映射,则存在可逆矩阵S∈Mn(P),使得f(A)=SATS-1,A∈Г。由此刻画了Г的保迹反乘法映射。 Suppose P is a field, let F be multiplicative semigroup which satisfies {aEy|i,j=2,…,n,a∈P} lohtain in Г lohtain in Mn(P), where Mn(P) denotes the semigroup of all n x n matrices over P. In this paper, we prove a result: suppose f:Г→Mn(P)is a anti -multiplicative map that preserve trace, then there exists an inverti- ble S∈Mn(P) which form f(A)=SA^TS^-1,YA∈Г.
作者 胡付高
机构地区 孝感学院数学系
出处 《孝感学院学报》 2007年第3期45-47,共3页 JOURNAL OF XIAOGAN UNIVERSITY
基金 湖北省教育厅科研项目(D200626001)
关键词 矩阵代数 乘法映射 反乘法映射 matrix algebra trace multiplicative map anti - multiplicative map
  • 相关文献

参考文献18

  • 1Guterman A,Li C K,Semerl P.Some general techniques on linear preserver problems[J].Lin.Alg.Appl.,2000,315:61-81.
  • 2Li C K,Tsing N K.Linear preserver problems:a brief introduction and some special techniques[J].Lin.Alg.Appl.,1992,162-164:217-235.
  • 3Pierce S,et al.A survey of linear problems[J].Lin.Multi.Alg.,1992,33:1-129.
  • 4Omladic M,Semrl P.Spectrum-preserving additive maps[J].Lin.Alg.Appl.,1991,153:67-72.
  • 5Omladic M,Semrl P.Additive mappings preserving operators of rank one[J].Lin.Alg.Appl.,1993,182:239-256.
  • 6Bell J,Sourour A R.Additive rank-one mappings on triangular matrix algebras[J].Lin.Alg.Appl.,2000,312:13-33.
  • 7Cao Chongguang,Zhang Xian.Additive operators preserving idempotent matrices over fields and applications[J].Lin.Alg.Appl.,1996,248:327-338.
  • 8Tang Xiaomin,Zhang Xian,Cao Chongguang.Additive adjugate preservers on the matrices over fields[J].J.of Northeastern Mathematical,1999,15(2):246-252.
  • 9Zhang Xian,Cao Chongguang,Bu Changjiang.Additive maps preserving M-P inverses of matrices over fields[J].Linear and Multilinear Algerbra,1999,46:199-211.
  • 10曹重光,张显.幂保持加法映射[J].数学进展,2004,33(1):103-109. 被引量:4

二级参考文献20

  • 1[1]Hochwald S H. Multiplicative maps on matrices that preserve the spectrum[J]. Lin. Alg. Appl., 1994,212/213:339-351.
  • 2[2]Hou Jinchuan. Multiplicative maps on B(X)[J]. Science in China Ser. A, 1998,41:337-345.
  • 3[3]Molnar Lajos. Multiplicative maps on ideals of operators which are local automorphisms[J]. Acta Sci. Math. (Szeged), 1999,65(3-4):727-736.
  • 4[4]Molnar Lajos. Some multiplicative preservers on B(H)[J]. Lin. Alg. Appl., 1999,301:1-13.
  • 5[1]Li C K, Tsing N K. Linear preserver problems: a brief introduction and some special techniques [J]. Lin.Alg. Appl., 1992, 162-164: 217- 235.
  • 6[2]Pierce S. et. al. A survey of linear problems [J]. Lin. Multi. Alg., 1992, 33: 1-129.
  • 7[3]Guterman A, Li C K, Semrl P. Some general technigues on linear preserve problems [J] Lin. Alg. Appl.,2000, 315: 61-81.
  • 8[4]Omladic M, Serml P. Additive mappings preseving operators of rank one [J]. Lin. Alg. Appl., 1993, 182:239-256.
  • 9[5]Bell J, Sourour A R. Additive rank-one mappings on triangular matrix algebras [J]. Lin. Alg. Appl.,2000, 312:13-33.
  • 10[6]Omladic M, Serml P. Spectrum-preserving additive maps [J]. Lin. Alg. Appl., 1991, 153: 67-92.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部