期刊文献+

简化二次曲面的一种新方法 被引量:1

A Kind of New Method on Curved Surface of Second Degree Simplified
下载PDF
导出
摘要 目的简化二次曲面,并给出具体的坐标变换式,同时解决某些多项式的因式分解.方法采用矩阵代数的理论.结果得出了二次曲面简化的公式和某些多项式因式分解的相关结论.结论用矩阵代数的理论简化二次曲面和解决某些多项式的因式分解的方法是可行的.这种方法是简化二次曲面的一种新方法. Purpose To implify curved surface of second degree and to give out an exact coordinate expression, at the same time solve some polynomials factor decomposition. Method Adopted the theories of the matrix algebra. Result Obtained formulas of curved surface of second degree simplified with some conclusion related of polynomials factor decomposition. Conclusion It is feasible to simplified curved surface of second degree and solved some polynomials factor decomposition by the theories of the matrix algebra. This kind of method is workable. This kind of method is a kind of new method that curved surface of second degree is simplified.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2007年第4期702-704,共3页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金(60574011)
关键词 二次曲面 特征值 正交矩阵 因式分解 curved surface of second degree the characteristic value orthogonal matrix factor decomposition
  • 相关文献

参考文献7

  • 1同济大学应用数学系.线性代数[M].4版.北京:高等教育出版社,2003:113-136.
  • 2江苏师范学院数学系.解析几何[M].2版.北京:人民教育出版社,1982:233-268.
  • 3Werner Greub.Linear algbra (fourth edition)[M].Beijing:Springer-Verlag New York Heidelberg Berlin.World Publishing Corporation,Beijing,China,1981.
  • 4Gaisi Takeuti,Wilson M Zaring.Introduction to axiomatic set theory (second edition)[M].Beijing:Springer-Verlag New York Heidelberg Berlin.World Publishing Corporation,Beijing,China,1982.
  • 5Resnick Lauren B Ford,Wendy W.The Psychology of mathematics for instruction[M].New Jersey:Lawrence Erlbaum Associates,Publishers Hillsdale,New Jersey; 1981.
  • 6Kowalski H.Lineare algebra[M].Berlin:Walter de Gruyter Co.,Berlin,1963.
  • 7SHILOV G.Theory of linear spaces[M].Beijing:Perntice Hall Inc.,1961.

同被引文献2

  • 1杨武茂,李全英.空间解析几何[M].武汉:武汉大学出版社,2004(7).
  • 2杨禾瑞,郝炳新.高等代数[M].北京:高等教育出版社,2007(6).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部