期刊文献+

一种基于多支持向量机的增量式并行训练算法 被引量:1

An Incremental Parallel Training Algorithm with Multiple Support Vector Machine Classifiers
下载PDF
导出
摘要 为了改进传统算法,利用支持向量的特性,提出了一种基于多支持向量机的增量式并行训练算法(PMSVM)。选择对分类超平面有影响的样本点作为支持向量,以增加单个分类器的训练时间为代价换取整体训练和分类的精度。考虑到训练样本的分布对最终结果的影响,加入反馈向量进行适当的重复训练,以调整各分类器的学习性能。通过在测试数据集上进行的实验表明,该算法与批学习增量BSVM算法相比,在提高训练效率和分类精度的前提下,大大降低了训练时间。 To improve traditional algorithms and take advantage of characteristics of support vectors, an incremental parallel training algorithm with multiple SVM classifiers is presented in this paper. In this parallel algorithm, the samples point which affects the classified hyperplane is chosen as support vector to gain a sufficient accuracy of the whole training and classification process at the price of increasing the training time of single SVM classifier. Considering the relationship between training samples distribution and the form of hyperplane, some samples are taken as feedbacks for use in appropriate repeating training to adjust the learning performance of each classifier. The practical experiment results show that compared with the batch SVM, this parallel MSVM training algorithm is efficient and can significantly reduce training time with high training efficiency and classification accuracy.
出处 《航空电子技术》 2007年第2期20-24,共5页 Avionics Technology
关键词 支持向量机 增量学习 并行结构 反馈 support vector machine ( SVM ) incremental learning parallel structure feedback
  • 相关文献

参考文献10

  • 1Vapnik V. Statistical learning theory[M], New York: Springer Verlag, 1995.
  • 2I Hadzic, V Kecman. Support vector machines trained by linear programming: Theory and application in image compression and data classification[A]. Proc. of the 5th Seminar on Neural Network Applications in Electrical Engineering[C]. Thessaloniki: ITI Press, 2000.18-23.
  • 3田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 4刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26
  • 5F. J. Provost and V. Kolluri. A survey of methods for scaling up inductive learning algorithms[R]. Technical Report ISL-97-3, Intelligent Systems Lab., Department of Computer Science, University of Pittsburgh, 1997.
  • 6周伟达,张莉,焦李成.支撑矢量机推广能力分析[J].电子学报,2001,29(5):590-594. 被引量:56
  • 7N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines[A]. Proceeding of IJCAI Conference[C]. Sweden, August 1999.
  • 8曾文华,马健.支持向量机增量学习的算法与应用[J].计算机集成制造系统-CIMS,2003,9(z1):144-148. 被引量:27
  • 9R. Collobert, Y.Bengio, S.Bengio. A parallel mixture of SVMs for very large scale problems[A]. Proceedings of First International Workshop on SVM[C]. Canada, 2002.2388: 8-18.
  • 10Y. M. Wen and B. L. Lu. A cascade method for reducing training time and the number of support vectors[A]. Proceeding of International Symposium on Neural Network[C]. Dalian. 2004. 3173: 480-486.

二级参考文献8

  • 1[1]RATSABY J. Incremental learning with sample queries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(8) :883-888.
  • 2[2]WANG E H C, KUH A. A smart algorithm for incremental learning[J]. International Joint Conference on Neural Net works, 1992,3:121 - 126.
  • 3[3]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer- Verlag, 1995.
  • 4[4]CHRISTOPHER J,BURGES C. A tutorial on support vector machines for pattern recognition[M]. Boston: Kluwer Academic Publishers, 1998.
  • 5[6]CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines [DB/OL]. http://citeseer. nj. nec.com/chang01 libsvm. html, 2001 - 09 - 07.
  • 6Mehrotra S,SIAM J Optimization,1992年,2卷,4期,575页
  • 7Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期
  • 8赵海波,李建华,杨宇航.网络入侵智能化实时检测系统[J].上海交通大学学报,1999,33(1):76-79. 被引量:37

共引文献145

同被引文献16

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2杨静,张健沛,刘大昕.基于多支持向量机分类器的增量学习算法研究[J].哈尔滨工程大学学报,2006,27(1):103-106. 被引量:7
  • 3马金娜,田大钢.基于支持向量机的中文文本自动分类研究[J].系统工程与电子技术,2007,29(3):475-478. 被引量:14
  • 4李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 5Vapnik V N. The Nature of Statistical Learning Theory [M].New York: Springer-Verlag, 1995:205-208.
  • 6Ralaivola L, Flovence d. Incremental Support vector ma- chine Learning: a Local Approach[C] Proceedings of In- ternational Conference on Neural Network s. Vienna, Aus t ria,2001: 322-330.
  • 7Domeniconi C, Gunop 1o s D. Incremental support vector machine construction [A]. ICDM [C]. IEEE Trans, 2001: 589- 592.
  • 8Cristian, Shawe t. An introduction to support vector ma- chine [M]. New York: Cambridge University Press, 2000.
  • 9Lin K M, Lin C H. A Study of Reduced Support Vector Machines[C]. IEEE Transactions on Neural Network, 2003.
  • 10Hans Peter Graf, Eric Cosatto, Leon Bottou, et al. Parallel Support Vector Machines:The Cascade SVM[C]. Pro- ceedings of NIPS, 2004, 196-212.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部