期刊文献+

混沌神经网络优化机制研究 被引量:2

Research on Optimal Mechanism of Chaos Neural Network
下载PDF
导出
摘要 分析了混沌神经网络的优化机制,研究了具有模拟退火特性的混沌神经网络模型,给出了混沌神经网络的能量函数,以及计算网络Lyapunov指数的方法,从理论上证明了当网络参数满足一定条件时,网络具有混沌性状。在仿真实验中,应用Hopfield网络和混沌神经网络求解信道分配问题。结果表明,混沌神经网络在求解优化问题时具有更强的搜索全局最优解的能力,和更快的收敛速度。 The optimization mechanism of the chaos neural network (CNN) is analyzed through the research on the mathematic model of CNN with simulated annealing characteristics. The energy function of CNN and the method to calculate the Lyapunov exponent of CNN are given. It is proved that CNN can present the chaotic properties when its parameters satisfy certain conditions. The simulation results indicate that CNN has a stronger ability to search global optimal solution and a higher convergence speed than Hopfield network, when they are applied to resolve the channel assignment problem.
作者 王逊 朱志宇
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2007年第3期42-46,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国防预研基金(01J3.17)
关键词 混沌神经网络 HOPFIELD神经网络 优化 信道分配 chaos neural network Hopfield neural network optimization channel assignment
  • 相关文献

参考文献7

二级参考文献24

  • 1梁志珊,陈建华,刘哲.基于人工神经网络的自适应电力系统短期负荷预测[J].东北电力学院学报,1994,14(1):47-51. 被引量:7
  • 2庄镇泉,王熙法,王东生.神经网络与神经计算机[J].电子技术应用,1990,16(4):39-43. 被引量:28
  • 3Chen L,Aihara K.Chaotic simulated annealing by a neural networks model with transient chaos[ J].Neural Networks, 1995,8(6) :915--930.
  • 4Aihara K,Takabe T,Toyoda M. Chaotic neural networks[J].Phys Lett A, 1990,144(6) :333--340.
  • 5Chen L,Aihara K. Chaos and asymptotical stability in discrete-time neural networks[ J]. Physica D,.1997,104(2) :286--325.
  • 6Chen L,Aihara K. Global searching ability of chaotic neural networks[J] .IEEE Trans Circuits Systems I,1999,416(8) :974--993.
  • 7Marotto F R. Snap-back repellers imply chaos in R^#[J]. J Math Anal Appl, 1978 ,(1) : 199----223.
  • 8Chen G,Hsu S B,Zhou J. Snapback repelers as a cause of chaotic vibration of the wave equation witha Van der Pol boundary condition and energy injection at the middle of the span[ J]. J Math Phys,1998,39(12) :6459---6489.
  • 9Li T,Misiurewicz M,Pianigiani G,et al.No division implies chaos[J]. Trans Amer Math Soc, 1982,273( 1 ) : 191--199.
  • 10Li T,Yorke J. Period three implles chaos[J] .Amer Math Monthly ,1975,82(1 ):985--992.

共引文献78

同被引文献17

  • 1傅强,胡上序,赵胜颖.基于PSO算法的神经网络集成构造方法[J].浙江大学学报(工学版),2004,38(12):1596-1600. 被引量:18
  • 2Christodoulou C,Georgiopoulos M.Applications of Neural Networks in Electromagnetics[M].MA:Artech House,2001.
  • 3Guney K,Sagiroglu S,Erler M.Generalized neural method to determine resonant frequencies of various microstrip antennas[J].International Journal of RF and Microwave Computer-Aided Engineering,2002,12(1):131-139.
  • 4Sagiroglu S,Kalinli A.Determining resonant frequencies of various microstrip antennas within a single neural model trained using parallel tabu search algorithm[J].Electromagnetics,2005,25(6):551-565.
  • 5Zhou Zhihua,Wu Jianxin,Tang Wei.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137 (1-2):239-263.
  • 6Hansen L K,Salamon P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
  • 7Kennedy J,Eberhart R.A discrete binary version of the particle swarm optimization[C]//Proceedings IEEE International Conference on Computational Cybernetics and Simulation,Piscataway,USA:[s.n.],1997:4104-4108.
  • 8Dahele J S,Lee K F.Effect of substrate thickness on the performance of a circular-disk microstrip antenna[J].IEEE Transactions on Antennas and Propagation,1983,31(3):358-364.
  • 9Dahele J S,Lee K F.Theory and experiment on microstrip antennas with air gaps[C]// Proc Inst Elect Eng.[S.l.]:IEEE,1985,132:455-460.
  • 10Carver K R.Practical analytical techniques for the microstrip antenna[C]//Proceedings Workshop Printed Circuit Antenna Tech.Las Cruces,NM:[s.n.],1979(7):1-20.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部