摘要
应用跟踪微分器在处理信号时具有较强的误差衰减能力和抗扰动能力,针对传统的简单自适应控制算法中增益调节过于简单、收敛速度慢且适应性不强的缺点,对传统的简单自适应算法进行了改进,提高了收敛速度,减小了静差。描述了该算法的结构和原理,运用Lyapunov稳定性理论和LaSalle不变性原理证明了控制算法是稳定的,跟踪误差收敛到零。计算机仿真结果验证了算法的可行性和有效性,并给出了参数选择的一般法则。
The tracking-differentiator which has high error reduction and anti-disturbance capability to process signal is used to improve the ability of the traditional simple adaptive control. The convergence speed is increased, and the steady-state error is reduced. The focus is on describing the structure and principle of the method and proving stability of the algorithm and convergence of error by Lyapunov stability theory and LaSalle invariance principle. Simulations show the validity of the algorithm. And the ndes of selecting the parameters of the algorithm are given.
出处
《控制工程》
CSCD
2007年第4期356-358,共3页
Control Engineering of China
关键词
简单自适应控制
跟踪-微分器
稳定性
simple adaptive control (SAC)
tracking-differenfiator
stability