期刊文献+

基于Youla参数化的动态随机系统最小误差熵控制(英文)

Minimum Error Entropy Controller for Dynamic Stochastic System Using Youla Parameterization Formula
下载PDF
导出
摘要 针对具有随机干扰的动态系统,提出一种最小误差熵控制方法。基本思想是应用Youla参数化公式构建具有闭环稳定性的反馈控制策略。其中Renyis熵被作为跟踪误差信息以测度闭环系统的不确定性,Youla参数被优化以使闭环系统误差熵最小,且一个仿真实例也表明了所提算法的有效性。 A minimum tracking error entropy controller is presented for linear dynamic control systems subjeeted to stochastic disturbances. The main idea is to use the well-known Youla parameterization formula to construct a feedback control scheme with the guaranteed closed loop stability, where the flee parameters embedded in the Youla parameterization are then used to minimize the entropy of the closed loop tracking error. For this purpose, the Renyi's entropy to measure the information contained in tracking error is used so as to characterize the uncertainty of the closed loop control system. An illustrative example shows the use of the control algorithm, and satisfactory results are obtained.
作者 杨承志 王宏
出处 《控制工程》 CSCD 2007年第4期362-365,共4页 Control Engineering of China
基金 云南省自然科学基金资助项目(2006F0025M)
关键词 跟踪误差 Renyis熵 YOULA参数化 概率密度函数 tracking error Renyi's entropy Y oula parmneterization probability density fimctions (PDFs)
  • 相关文献

参考文献2

  • 1Yue H,Wang H.Minimum entropy control of closed-loop tracking error for dynamic stochastic system[J].IEEE Transaction on Automatic Control,2003,48(1):382-387.
  • 2Iglesias P A,Mustafa D,Glover K.Discrete-time H1 controllers satisfying a minimum entropy criterion[J].Syst Contr Lett 1990,14(4):275-286.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部