期刊文献+

肿瘤识别过程中特征基因的选取 被引量:15

Selection of Feature Genes in Cancer Clsssification
下载PDF
导出
摘要 基于肿瘤基因表达数据,运用信息科学的方法和技术建立肿瘤的预测分类模型,对肿瘤的识别具有重要意义。在建立模型的过程中,如何能够有效地排除噪声基因进而挑选出分类特征基因对肿瘤预测的准确性有很大的影响。针对该类问题,提出了一种新的特征基因选取方法—CLUSTER_S2N法。该方法采取了"信噪比"指标与聚类相结合的方法来挑选特征基因,并分别以前列腺癌和急性白血病的基因表达谱为例,用支持向量机作为分类器进行了肿瘤的分类预测实验。实验结果表明该方法的可行性。 The problem on establishing tumor classfication, prediction models using methodology and technique of information science with gene expression data are dealt with. In the process of classification, selection of feature genes affects the outcome of classification greatly. To select feature genes, an approach is proposed, which uses the signal to noise ratio and cluster. A linear support vector machine is used as the classifier to classify samples, and the method is applied to prostate cancer dataset and human acute leukemias dataset as test case. The experiment resuits show the effectiveness and feasibility of the proposed method.
作者 阮晓钢 晁浩
出处 《控制工程》 CSCD 2007年第4期373-375,379,共4页 Control Engineering of China
基金 国家自然科学基金重点资助项目(60234020)
关键词 特征基因 肿瘤分类 基因表达谱 feature genes cancer classification gene expression profiles
  • 相关文献

参考文献7

  • 1Ramaswamy S,Golub T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.
  • 2Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Med,2001,7(6):658-659.
  • 3Alizadeh A A,Eisen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403(6769):503-511.
  • 4Welsh J B,Sapinoso L M,Su A I,et al.Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer[J].Cancer Res,2001,61(16):5974-5978.
  • 5Furey T S,Cristianini N,Duffy N,et al.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics,2000,16(10):906-914.
  • 6Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 7Singh D,Febbo P,Ross K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1(2):203-209.

同被引文献200

引证文献15

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部