期刊文献+

基于在线聚类的模糊建模方法及其应用 被引量:3

Fuzzy Modeling Based on Online Clustering and Its Application
下载PDF
导出
摘要 针对复杂非线性动态系统的模糊建模问题,提出了一种基于在线聚类的模糊建模方法。该方法首先采用在线聚类算法辨识T-S模型的前提参数,然后采用递推最小二乘算法辨识结论参数。根据系统过程中新的数据信息,模糊规则可以自动增加、修改和删除,实现了模型结构和参数的在线辨识和更新。最后将提出的方法应用于Box-Jenkin煤气炉建模和二自由度机器人建模两个例子。仿真结果表明,基于该方法辨识的T-S模糊模型具有很高的精度,而且模型结构简单、建模速度快,便于工程应用。 In view of modeling problems of nonlinear dynamic systems, a fuzzy modeling approach based on online fuzzy-clustering algorithm is presented. The structure and consequent parmeters are identified by the online clustering algorithm and recursive least square respectively. The rules can be added, modified and deleted with the new data information automatically. The online identification and update of model structure and parameters is obtained update rapidly and accurately. The simulation results of Box-Jenkin gas furnace and two-DOF robotic show the effectiveness and advantages of this approach.
出处 《控制工程》 CSCD 2007年第4期376-379,共4页 Control Engineering of China
关键词 在线聚类 模糊建模 递推最小二乘 机器人 online clustering fuzzy modeling recursive least square robot
  • 相关文献

参考文献7

  • 1Gomez-Skarmera A F,Delgado M,Vila M A.About the use of fuzzy clustering techniques for fuzzy model identification[J].Fuzzy Sets and Systems,1999,106(2):179-188.
  • 2Lo J C,Yang C H.A heuristic error-feedback learning algorithm for fuzzy modeling[J].IEEE Trans Syst Man and Cybem,1999,29 (6):686-691.
  • 3Wu B L,Yu X H.Fuzzy modeling and identification with genetic algorithm based learning[J].Fuzzy Sets and Systems,2000,113(3):351-365.
  • 4Angolov P P,Filev D P.An approach to online identification of TakagiSugeno fuzzy models[J].IEEE Trans Syst Man and Cybern,2004,34(1):484-498.
  • 5Qi R Y,Brdys M A.Adaptive fuzzy modelling and control for discretetime nonlinear uncertain systems[C].Americian:Control Conference,2005.
  • 6Box G E P,Jenkins G M.Time series analysis:forecasting and control[M].San Francisco:Holden Day,1970.
  • 7Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Trans Syst Man and Cybem,1985,15(1):116-132.

同被引文献14

  • 1王耀男.机器人智能控制工程[M].北京:科学出版社,2004.
  • 2Lo Jichang, Yang Cheinhsing. A heuristic error-feedback learning algorithm for fuzzy modeling[J].IEEE Trans on Syst Man and Cybern, 1999, 29(6): 686- 691.
  • 3Angelov P P, Filev D P. An approach to online identification of Takagi-Sugeno fuzzy models [J]. IEEE Transon Syst Man and Cybern, 2004, 34(1): 484- 498.
  • 4Kim E, Park M. A new approach to fuzzy modeling[J].IEEE Trans Fuzzy Syst, 1997, 8(5): 328-337.
  • 5Angelov P, Buswell R. Identification of evolving fuzzy rule-based models[J]. IEEE Trans Fuzzy Syst, 2002, 10(10): 667 -677.
  • 6Jang J S R, Sun C T. Neural fuzzy modeling and control [ J ]. Proceedings of IEEE, 1995,83 (3) :378-406.
  • 7Jang J S R. ANFIS:Adaptive-network-based fuzzy inference system [ J ]. IEEE Transactions on, Systems, Man and Cybernetics, 1993, 23(3) :665-685.
  • 8Chen X B ,Qu Q, Yu Z J. Modeling of hot metal desulfuration processes [ C ]. Szczecin, Pot :9th IEEE International Conference on Methods and models in Automation and Robotics ,2003.
  • 9Ye Z, Sadeghian A, Wu B. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System [ J ]. Electric Power Systems Research, 2006,76 (9-10) :742-752.
  • 10Chiu S L. Fuzzy model identification based on cluster estimation [ J]. Journal of Intelligent and Fuzzy System, 1994,2 ( 3 ) : 267- 278.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部