期刊文献+

Numerical Study on Instantaneous Discharge of Unsorted Particle Cloud in Cross Flow

Numerical Study on Instantaneous Discharge of Unsorted Particle Cloud in Cross Flow
下载PDF
导出
摘要 The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical modal, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k- ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the sohd phase (particles), both the processes are coupled through the momentmn sources. In the model the wake turbulence induced by particles has been included as additional source term in the k - ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudi- nal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained. The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical modal, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k- ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the sohd phase (particles), both the processes are coupled through the momentmn sources. In the model the wake turbulence induced by particles has been included as additional source term in the k - ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudi- nal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained.
出处 《China Ocean Engineering》 SCIE EI 2007年第2期305-316,共12页 中国海洋工程(英文版)
基金 This work was supported by a grant fromthe Research Grant Council of the Hong Kong Special Administrative Region(Project No5033/98E)
关键词 3D numerical model two-phase flow Eulerian-Lagrangian method instantaneous discharge particlecloud cross flow 3D numerical model two-phase flow Eulerian-Lagrangian method instantaneous discharge particlecloud, cross flow
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部