摘要
将修正的Kleene系统中的广义矛盾式理论进行推广,在R0代数[0,1]的各类无限子R0代数中的广义重言式的基础上讨论了广义矛盾式理论:(1)讨论了一般子R0代数的广义矛盾式;(2)根据聚点性态的不同将无限子R0代数作了分类,并在各类无限子R0代数中讨论了广义矛盾式,进而在相应的子R0代数中给出了公式集F(S)的一种划分;(3)证明了在子R0代数E2中,L*中存在着可数多个不同的广义矛盾式.
The theory of generalized contradictory in revised Kleene system is extended in this paper. The theory of generalized contradictory is considered on the basis of the theory of generalized tautologies for all kinds of infinite subalgebras of R0 algebra [0,1]. (1) The theory of generalized contradictory of common R0 subalgebra is considered. (2) According to different nature of accumulation point, infinite subalgebras of R0 algebra are classified, and the theory of generalized contradictory for all kinds of infinite subalgebras of R0 algebra is discussed. Moreover, partitions on F(S) have been given in corresponding Ro subalgebras. (3) It is proved that, in R0 subalgebra E2, the system L" has countable different generalized contradictory.
出处
《纺织高校基础科学学报》
CAS
2007年第2期107-112,共6页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金重点项目(10331010)