摘要
根据Biot理论,利用势函数方法建立了频域内孔隙介质的二维格林函数;利用格林函数和孔隙介质中的互易定理,建立了孔隙介质的边界积分方程.通过引入二维弹性静力学解和二维La-place方程的基本解,处理了边界积分方程中的柯西主值积分问题.笔者的研究为应用边界元方法求解孔隙介质中的二维动力问题提供了理论基础.
In terms of Biot's theory and potential method, the two-dimension Green's function for a saturated porous medium in the frequency domain is established. The boundary integral equation for the porous medium is obtained via the Green's function and the reciprocal work theorem for the porous medium. By introducing the fundamental solutions for the two-dimension static elastic problem and the two-dimension Laplacian equation, the Cauchy singularity involved in the boundary integral equation is removed. The current study paves the way for the solution of two-dimension dynamic problems for a saturated porous medium.
出处
《青岛理工大学学报》
CAS
2007年第3期9-14,共6页
Journal of Qingdao University of Technology
基金
国家自然科学基金资助项目(50578071)
关键词
BIOT理论
孔隙介质
格林函数
边界积分方程
奇异性
Biot' s theory
saturated porous medium
Green's function
integral equation of the boundary
singularity