期刊文献+

基于多尺度梯度矢量场GAC模型的MR医学图像分割 被引量:2

MR Image Segmentation Based on GAC Model with Multiscale Gradient Vector Field
下载PDF
导出
摘要 医学图像分割是图像分割技术的一个重要应用领域,GAC(测地线活动轮廓)模型是基于PDE(偏微分方程)方法中一种常用的图像分割模型,使用这种模型时,如何选择合适的平滑尺度是影响分割效果的重要因素之一。提出了一种基于多尺度梯度矢量场GAC模型图像对象轮廓提取的MR图像分割方法,用多尺度梯度矢量取代GAC模型中单一尺度下平滑图像的梯度矢量,提高了GAC模型的收敛速度,有效地改善了局部极小值问题。实验结果验证了该方法的有效性。 PDE (partial differential equation) based GAC (geodesic active contour) model is useful for medical image segmentation. To improve the local minimum problem of GAC model, usually we need smooth the image with a proper smoothness scale before we acquire the gradients of the image. But it is difficult to choose the smoothness scale as we usually do in acquiring the gradients of the approximating image by smoothening it with a single scale. In order to overcome this drawback, multi-scale gradient vector field is used instead of single-scaled gradient vector of images in GAC model. The multi-scale gradient vector field, which can be obtained by updating the gradient vector for each position of the image from lower to higher levels resolution, is still smooth enough in the whole image and accurate for the main edges of the image. The experimental results show that this improved GAC model is effective for MRI( magnetic resonance imaging) segmentation.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第7期1214-1217,共4页 Journal of Image and Graphics
基金 国家博士点基金项目(20040699015)
关键词 医学图像分割 核磁共振图像 多尺度梯度矢量场 测地线活动轮廓模型 medical image segmentation, M RI, multiscale gradient vector field, geodesic active contour model
  • 相关文献

参考文献10

  • 1Castlemen K R.Digital Image Processing[M].New Jersey,USA:Prentice Hall,1996:452-669.
  • 2Adams R,Bischof L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (6):641-647.
  • 3Canny J F.A computational app roach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 4Sapiro C.Geometric Partial Differential Equations and Image Analysis[M].London; Cambridge University Press,2002.
  • 5Kass M,Witkin A,Terzopoulos D.Snakes; Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 6Caselles V,Kimmel R,Sapiro G,Geodesic active contours[A].In:Proceedings 5th International Conference on Computer Vision[C],Boston,MA,USA,1995:694-699.
  • 7Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 8Chung D H,Sapiro G,On the level lines and geometry of vectorvalued images[J].IEEE Signal Processing Letter,2000,7(9):241-243.
  • 9Sumengen B,Manjunath B S.Edgeflow-driven Variational Image Segmentation:Theory and Performance Evaluation[DB/OL].http;// vision,ece.ucsb.edu/publications/OSTechRepBaris.pdf,2005-05-31.
  • 10Peng Jin-ye,Yang Wan-hai,Wang Yi-chun.Multiscale gradient vector field with application to image denoising and enhancement[A].In:IEEE Proceedings on IIH-MSP'06[C/CD],California,USA,2006; 04041689.pdf.

同被引文献27

  • 1Anderson C,Burt P,van der Wal G.Change detection and tracking using pyramid transformation techniques[C] //Proceedings of SPIE-Intelligent Robots and Computer Vision,1985,579:72-78.
  • 2Haritaoglu I,Dads L S,Harwood D.W4:who?when?where?what?A real time system for detecting and tracking people[C] //Japan:International Conference on Face and Gesture Recognition,1998.
  • 3Wren C,Azarbayejani A,Darrell T,et al.Pfinder:Beal-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 4Barton J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1):42-77.
  • 5Kim B,Kim H J.Efficient region-based motion segmentation for video monitoring system[J].Pattem Recognition Letters,2003,24:113-128.
  • 6Caselles V,Kimmel R,Sapiro G.Geodesic active contours[C] //Proceedings 5th International Conference on Computer Vision,Boston,MA,USA,1995:694-699.
  • 7Caselles V,Kimmel R,Sapirp G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 8Chang D H,Sapiro G.On the level lines and geometry of vectorvalued images[J].IEEE SP Lett,2000,7(9):241-243.
  • 9Sapiro G.Geometric partial differential equations and image analysis[M].[S.l.] :Cambridge University Press,2001:207-212.
  • 10王宾 潘建寿 梁雁冰.基于Matrox卡的视频图像运动检测[J].西北大学学报,2004,2(3):1-7.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部