摘要
设G为n阶2-连通图,c(G)为图G的周长,δ=min{d(v)|v∈V(G)},g为G的围长。本文证明:如果g≥5。
Let G be a 2--connected graph with n vertices, c(G) the circumference ofG,δ=min{d(v)|v∈v(G)}, and g the girth of G. If g≥5, it is proved thatc(G)≥min{n,(g-2)δ}, g≥5, δ≥>3;g,g≥5, δ=2;min{n,2δ},3≤g≤4.