期刊文献+

稀土钠钨青铜化合物Na_xLa_yWO_3结构与导电性的理论研究 被引量:1

Theoretical Study on the Structure and Conductivity of Tungsten Bronzes Na_xLa_yWO_3
下载PDF
导出
摘要 使用密度泛函理论研究了稀土钠钨青铜化合物的结构和导电性质.在实验晶体结构数据的基础上构建NaxWO3和NaxLayWO3的模型分子,优化其几何结构,并与实验值比较.在此基础上计算了化合物的能带结构和电子能态密度.通过这些研究探讨当La3+取代NaxWO3的中心Na+后对结构和导电性的影响.计算结果表明La3+的取代并没有改变结构的空间对称性,但却使晶格参数和体积略有增大;取代使电子结构发生了变化,在费米面附近,能带相互交叠更加密集,电子出现的几率增加,从而增加了其导电性.这可能是掺杂后La3+的4f和5d电子的贡献使电子轨道杂化作用增强,电子云密度分布重排的结果. The geometric structures and electronic structures of tungsten bronzes NaxWO3 and Nax- LayWO3 (x〉0.36, y〈0.015) have been explored by density functional theory (DFT). The geometry was optimized using ADF (Amsterdam density functional) program package with TZ2P basis set. The energy bands and density of states were calculated using the VASP (Vienna ab-initio simulation package) program. The calculated structures are close to the experimental values. After the substitution of La^3+ for Na^+, the space symmetry is not changed but the lattice parameters and volumes of NaxLayWO3 increase. The energy bands are condensed and the appearance probabilities of the electrons are enhanced near the Fermi-surface. Therefore, the introduction of La^3+ is important to improve the conductivity of the sodium tungsten bronze.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第13期1197-1201,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20503018) 黑龙江省自然科学基金(TA2005-15) 黑龙江省普通高等学校青年骨干支持计划(1151G019)资助项目
关键词 钨青铜 NaxLayWO3 导电性 结构优化 能带结构 态密度 tungsten bronze NaxLayWO3 electron conductivity geometry optimization band structure density of states
  • 相关文献

参考文献6

二级参考文献75

  • 1祝江波,李振华,乔明华,范康年.液体和非晶态NiAl_3合金结构的从头算分子动力学模拟[J].化学学报,2004,62(22):2218-2222. 被引量:5
  • 2[1]Ceulemans, A.; Chibotaru, L. F.; Heylen, G. A.; Pierloot, K.; Vanquickenbome, L. G. Chem. Rev. 2000,100, 787.
  • 3[2]Kahn, O. In Molecular Magnetism, VCH, New York, 1993.
  • 4[3]Vicente, R.; Escuer, A.; Ribas, J.; Salah el Fallah, M.; Solans, X.; Font-Bardia, M. Inorg. Chem. 1993, 32, 1920.
  • 5[5]Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem. 1999, 20, 1391.
  • 6[6]Caballol, R.; Castell, O.; alas, F.; Moreira, I. D. P. R.; Malrieu, J. P. J. Phys. Chem. A 1997, 101, 7860.
  • 7[7]Yan, F.; Cheng, Z. J. Phys. Chem. A 2000, 104, 6295.
  • 8[8]Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884.
  • 9[9]Kahn, O. Angew. Chem., Int. Ed. Engl. 1985, 24,834.
  • 10[10]Sikorav, S.; Bkouche-Waksman, I.; Kahn, O. Inorg. Chem. 1984, 23, 490.

共引文献10

同被引文献23

  • 1Gardner W R,Danielson G C.Electrical Resistivity and Hall Coefficient of Sodium Tungsten Bronze[J].Phys Rev,1954,93(1):46-51.
  • 2Mott N F.The degenerate electron gas in tungsten bronzes and in highly doped silicon[J].Philos Mag A,1977,35(1):111-128.
  • 3Brown B W,Banks E.The Sodium Tungsten Bronzes[J].J Am Chem Soc,1954,76(4):963-966.
  • 4Bullet D W.Bulk and surface electron states in WO3and tungsten bronzes[J].J Phys C Solid State Phys,1983,16(11):2197-2207.
  • 5Tsuyumoto I,Kudo T.Humidity sensor using potassium hexagonal tungsten bronze synthesized from peroxo-polytungstic acid and its resistivity change mechanism[J].Materials Research Bulletin,1996,31(1):17-28.
  • 6Hutchins M,Kamel N,Abdel-Hady K.Effect of oxygen content on the electrochromic properties of sputtered tungsten oxide films with Li+insertion[J].Vacuum,1998,51(3):433-439.
  • 7Massarotti V,Capsoni D,Bini M,et al.Structural and Spectroscopic Properties of Pure and Doped Ba6Ti2Nb8O30 Tungsten Bronze[J]Phys Chem B,2006,110(36):17798-17805.
  • 8Zhu Z T,Musfeldt J L,Teweldemedhin Z S,et al.Vibrational Properties of Monophosphate Tungsten Bronzes(PO2)4(WO3)2 m(m=4,6)[J].Chem Mater,2001,13(9):2940-2944.
  • 9Andrew J G,Lain M,Madeleine H.The First Structural and Spectroscopic Characterization of a Neptunyl Polyoxometalate Complex[J].J Am Chem Soc,2002,124(45):13350-13351.
  • 10Stanley R K,Morris R C,Moulton W G.Conduction properties of the hexagonal tungsten bronze,RbxWO3[J].Phys Rev B,1979,20(5):1903-1914.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部