期刊文献+

广义的广义变分问题及在最优化中的应用

Generalized generalized-variational inequalities and its applications in optimals
下载PDF
导出
摘要 目的为求得广义的广义变分问题的解,并实现其在最优化问题中的应用。方法利用非线性分析及不动点方法。结果在Banach空间中得出了广义的广义变分问题的解的存在性条件,并应用此结果求得鞍点问题的解。结论重新认识了广义的广义变分问题的解的存在性,据此实现了在最优化中鞍点问题求解的应用,推广了作者和O.L.Mangasbia等人过去的相关结果。 Aim To get the solution of new generalized variational inequalities ties and realize it in optimize the application of the the question most. Methods To utilize nonlinear analysis and fixed point methods. Results Have obtained the existance of the solution of new generalized variational inequalities ties in Banach space and employ this results to try to get the saddle to click the solving of the question. Conclusion Re-recognize the existance of the solution of new generalized which the saddle point question relevant results in the past. variational inequalities ties, solved in the optimization, and according to the above has realized the application have popularized author and O. L. Mangasbia, et al.
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期176-178,共3页 Journal of Northwest University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2003A10) 陕西省教育厅自然科学专项基金资助项目(05JK30306JK170)
关键词 BANACH空间 广义的广义变分不等式 η-单调 鞍点 最优解 Banach space generalized-variational inequality η-monotone saddle point optimal solution
  • 相关文献

参考文献7

  • 1薛西峰,邢志栋.集值单调算子的变分不等式[J].西北大学学报(自然科学版),2006,36(1):10-12. 被引量:2
  • 2MANGASRIAN O L,PONSTEIN J. Minmax and duality in nonlinear programming [ J ]. Math Anal Appl, 1965, 11 : 504-518.
  • 3PARIDA J, SEN A. Variational-like inequality for multifunctions with applications [ J]. Math Anal Appl, 1987,124:73-81.
  • 4YAO J C. The generalized quasi-variational inequality with applications [ J ]. Math Anal Appl, 1991 : 158 : 139- 160.
  • 5KUM S H. Remarks on variational inequalities and generalized quasi-variational inequalities[ J]. Korea Math Soc, 1993,30 : 433-446.
  • 6WALTERR.Factional Analysis[M].北京:机械工业出版社,2004.
  • 7VASILE L L. Fixed Point Theorem[ M]. Tokyo:D Reidel Publishing Company, 1981.

二级参考文献5

  • 1BROWDER F E.Nolinear operators and nontinear equation of evolution in Banach spaces in"Proceeding of symposia in pure mathematics"[ J ].Amor Math Soc Providence,1976,18:36-40.
  • 2FAN K.A genoralization of Tychonoffs fixed point theorem[J].Math Ann,1961,142:305-310.
  • 3KNESER H.Sur un theorem fondemental de latheorie des jeux[J].C R Acad Sci Math,1952,142:2 418-2 420.
  • 4YAO J C.Multi-valued Varational inequality with k-Pseudmonotone operators[ J].JOTA,1994,83 (2):391 -403.
  • 5金聪.启发式遗传算法及其应用[J].数值计算与计算机应用,2003,24(1):30-35. 被引量:13

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部