期刊文献+

基于多相关系数分组HMM2的学习算法 被引量:1

The learning algorithm of HMM2 based on grouping multiple observations by multiple correlation coefficient
下载PDF
导出
摘要 目的为了得到一种基于多相关系数分组二阶隐马尔可夫模型(second-or-der HMM:HMM2)的学习算法。方法最大似然准则,Lagrange乘子法。结果给出了在观测噪声和马尔可夫链不相互独立条件下二阶隐马尔可夫模型(second-or-der HMM:HMM2)的结构,获得了在多观测序列不相互独立的情况下HMM2的Baum-Welech学习算法。结论为得到充足数据,以对所有参数可靠估计,必须使用多观测序列。所获算法避免了直接计算条件概率的困难,考虑了训练序列间的相关性,故使计算过程更为便捷,在观测序列分组均匀相关情况下非常有用。 Aim To obtain a training algorithm of second-order HMM (HMM2) which is based on grouping multiple correlation coefficient. Methods The maximum likelihood criterion and Lag-range multiplier. Results It proposes the structure of second-order HMM (HMM2) on condition that observation noise is not independent of the Mark- ov chain, and obtain the Baum-Welch algorithm of the model on condition that multiple observations is not independent. Conclusion It generally requires multiple observations with aim to obtain a large number of data to train the model. The new algorithm avoids computing the conditional probabilities directly and considers the correlativity between successive observation vector, it is very useful for training HMM when the group of multiple observations are uniformly dependent.
作者 杜世平
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期183-186,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(30300219)
关键词 二阶隐马尔可夫模型(second-or-der HMM:HMM2) 多观测序列 多相关系数 Baum-Welech算法 second-order HMM multiple observations multiple correlations Baum-Welch algorithm
  • 相关文献

参考文献7

  • 1LI Xiao-lin. Marc parizeau and rejean plamondon training hidden markov models with multiple observationa combinatorial method [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (4) : 371-377.
  • 2RABINER L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proc IEEE, 1989,77(2) :257-286.
  • 3DurbinR EddyS KroghA MitchisonG.生物序列分析,蛋白质和核酸的概率论模型[M].北京:清华大学出版社,2002..
  • 4杜世平,李海.二阶隐马尔可夫模型及其在计算语言学中的应用[J].四川大学学报(自然科学版),2004,41(2):284-289. 被引量:20
  • 5MARI J F, HATON J P,ABDELAZIZ K. Automatic word recognition based on second-order hidden Markov models [ J]. IEEE Transactions on Speech and Audio Processing, 1997,5(1 ) :22-25.
  • 6钱敏平,龚光鲁.从数学角度看计算智能[J].科学通报,1998,43(16):1681-1695. 被引量:31
  • 7BOCCHIERI E, MARK B. Subspace distribution clustering hidden Markov model [ J ], IEEE Transactions on Speech and Audio Processing,2001,9(3) :264-275.

二级参考文献20

  • 1Lei G,Tech Report,1997年
  • 2邓明华,第三届中国计算机智能接口与智能应用会议学术论文集,1997年,204页
  • 3Fang H,SAIM J Control Optim,1997年,38卷,8期,1886页
  • 4Fang H,Stoch Process Appl,1997年,71卷,1期,55页
  • 5Zu Z B,Neural Netw,1996年,9卷,3期,483页
  • 6Fang H,Sci China A,1996年,39卷,9期,945页
  • 7Li Y,北京大学学报,1996年,32卷,5期,557页
  • 8陈翰馥,随机逼近,1996年
  • 9Huo Q,1994 International Symposium on Speech Image Processing and Neural Networks,1994年,698页
  • 10戴汝为,智能计算机基础研究’94,1994年,1页

共引文献47

同被引文献15

  • 1杜世平.混合二阶隐马尔可夫模型的Baum-Welch算法[J].云南大学学报(自然科学版),2006,28(2):98-102. 被引量:5
  • 2BAUM L E,PETRIE T.Statistical inference for probabilistic functions of finite state Markov chains[J].The Annals of Mathematical Statistics,1966,37:1554-1563.
  • 3RABINER L R.A tutorial on hidden Markov models and selected applications in speech recognition[J].Proceedings of the IEEE,1989,77(2):257-286.
  • 4LEVINSON S E.Structural methods in auroraatic speech recognition[J].Proceeding of the IEEE,1985,73:1625-1650.
  • 5GOUGH J,CHOTHIA C.SUPERFIAMILY:HMMs representing all proteins of known structure,SCOP sequence searches,alignments,and genome assignments[J].Nucleic Acids Research,2002,30(1):268-272.
  • 6DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,1977,39:1-38.
  • 7WU C F J.On the convergence properties of the EM algorithm[J].The Annals of Statistics,1983,11(1):95-103.
  • 8LEVINSON S E,RABINER L R,SONDHI M M.An introduction to the application of the theory of probabilistic functions of Markov process to automatic speech recognition[J].Bell System Technical Journal,1983,62(4):1035-1074.
  • 9LI Xiaolin,MARC P,REJEAN P.Training hidden markov models with multiple observations-a combinatorial method[J].IEEE Transactions on PAMI,2000,22(4):371-377.
  • 10MARI J F,HATON J P,KRIOUILE A.Automatic word recognition based on second-order hidden markov models[J].IEEE Transactions on Speech and Audio Processing,1997,5(1):22-25.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部