期刊文献+

一类非线性退化半导体方程弱解存在性的研究

Existence of solutions on a quasilinear degenerate system arising in semiconductors theory
下载PDF
导出
摘要 目的研究非线性退化半导体方程在初值u0,v0∈L2+(Ω)的条件下,其混和初边值问题弱解的存在性。方法利用截断的方法先将原问题正则化,对正则化问题的解做估计,并利用紧性引理。结果通过取极限证明了原问题解的存在性。结论在满足一定假设条件下,非线性退化半导体方程存在弱解。 Aim To prove the existence of the weak solution under appropriate conditions such as initial values u0,v0∈L2+(Ω) when a quasilinear degenerate system arising in semiconductors theory is considered. Methods Make a regularization of the problem by a cut-off method and the compact lemma. Results The limit of the solutions of the regularized problem is a solution of the original problem after estimates. Conclusion The existence of solutions on a quasilinear degenerate system is shown under some conditions.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期191-196,共6页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10371018) 淮海工学院科研课题基金资助项目(Z2005034)
关键词 半线性退化系统 半导体方程 存在性 quasilinear degenerate system semiconductors existence
  • 相关文献

参考文献8

  • 1DIAZ J L, GALIANO G, JUNGEL A. On a quasilinear degenerate system arising in semiconductors theory [ J ]. Real World Applications, 2001, ( 2 ) :305-336.
  • 2吴斌.退化半导体漂移-扩散模型解的存在性和惟一性[D].南京:东南大学,2005.
  • 3ANSGAR J. Qualitative behavior of Solutions of a degenerate nonlinear drift-diffusion model for semiconductors [ J]. Mathematical Models and Methods in Applied Science, 1995,5 (4) :497-518.
  • 4管平,邱建龙.一类半导体方程整体弱解的存在性[J].高校应用数学学报(A辑),2002,17(2):145-152. 被引量:2
  • 5GUAN P,FAN J. On the global existence and uniqueness of weak solutions to the nonstationary semiconductor equations [ J ]. Applied Mathematics and Computation, 2000,114 : 125-133.
  • 6LADYZHENSKAYA O A,URALTSEVA H H. Linear and Quasi-linear Elliptic Equations [ M ]. New York : Academic Press, 1987.
  • 7GROGER K. A W^1.p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations[ J]. Math Ann, 1989,283:679-687.
  • 8GROGER K, REHBERG J. Resolvent estimates in W^-1.p for second order elliptic differential operators in case of mixed boundary conditions [ J ]. Math Ann, 1989,285 : 105-113.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部