摘要
目的研究非线性退化半导体方程在初值u0,v0∈L2+(Ω)的条件下,其混和初边值问题弱解的存在性。方法利用截断的方法先将原问题正则化,对正则化问题的解做估计,并利用紧性引理。结果通过取极限证明了原问题解的存在性。结论在满足一定假设条件下,非线性退化半导体方程存在弱解。
Aim To prove the existence of the weak solution under appropriate conditions such as initial values u0,v0∈L2+(Ω) when a quasilinear degenerate system arising in semiconductors theory is considered. Methods Make a regularization of the problem by a cut-off method and the compact lemma. Results The limit of the solutions of the regularized problem is a solution of the original problem after estimates. Conclusion The existence of solutions on a quasilinear degenerate system is shown under some conditions.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期191-196,共6页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10371018)
淮海工学院科研课题基金资助项目(Z2005034)
关键词
半线性退化系统
半导体方程
存在性
quasilinear degenerate system
semiconductors
existence