期刊文献+

一种基于类中心最大间隔的支持向量机 被引量:1

A Support Vector Machine Based on Maximal Class-Center Margin
下载PDF
导出
摘要 传统的支持向量机分类超平面对噪声和野值非常敏感.使用传统的支持向量机对含有噪声的数据分类时,所得到的超平面往往不是最优超平面.为了解决这个问题,本文以两个类中心距离最大为准则建立分类超平面,构造一个新的支持向量机,称作类中心最大间隔支持向量机.理论分析和仿真实验结果证明了该方法的正确性和有效性. The separating hyperplane of traditional support vector machines is sensitive to noises and outliers. When traditional support vector machines separate data containing noises, the obtained hyperplane is not an optimal one. For this problem, a separating hyperplane is designed with the principle of maximizing the distance between two class centers, and a novel support vector machine, called maximal class-center margin support vector machine ( MC- CM-SVM) is designed. Theoretical analysis and experimental results show that the presented method is correct and effective.
出处 《信息与控制》 CSCD 北大核心 2007年第1期63-67,共5页 Information and Control
基金 总装"十五"国防预研项目(413030201)
关键词 支持向量机 分类超平面 核方法 support vector machine separating hyperpiane kernel method
  • 相关文献

参考文献10

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 2Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998.
  • 3Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2 (2):121 - 167.
  • 4Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge:Cambridge University,2000.
  • 5Chang C C,Lin C J.Training v-support vector classifiers:Theory and algorithms[J].Neural Computation,2001,13 (9):2119-2147.
  • 6Scholkopf B S,Smola A J,Williamson R C,et al.New support vector algorithms[J].Neural Computation,2000,12 (5):1207 -1245.
  • 7Zhang X G.Using class-center vectors to build support vector machines[A].Proceedings of the 9th IEEE Workshop on Neural Networks for Signal Processing[C].Piscataway,NJ,USA:IEEE,1999.3-11.
  • 8Tax A M J,Duin R P W.Data domain description using support vectors[A].Proceedings of the 7th European Symposium on Artificial Neural Networks[A].Brussels,Belgium:D-Facto,1999.251-256.
  • 9Muller K R,Mika S,Ratsch G,et al.An introduction to kernelbased learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181 -201.
  • 10Ratsch G,Onoda T,Muller K R.Soft margins for Adaboost[J].Machine Learning,2001,42(3):287 -320.

同被引文献7

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2陆从德,张太镒,李灿平,张伟.基于支持向量域描述的学习分类器[J].微电子学与计算机,2005,22(11):75-78. 被引量:3
  • 3Cristianini No Shawe-Tayor J. An introduction to support vector machines and other kernel-based learning methods[M].Cambridge University Press ,2000 : 93 - 111.
  • 4Tax Do Duin R. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11 - 13) : 1191 - 1199.
  • 5Tax D, Duin R. Uniform object generation for optimizing one class classifiers[J]. Journal of Machine Learning Research. 2001(2) :155 - 173.
  • 6Zhang X. Using class-center vector to build support vector machines[C]//Neurnal Networks for Signal Processing, New York : IEEE Press , 1999 : 3 - 11.
  • 7Blake C L, Merz C J. UCI repository of machine learning data bases[EB]. Department of Information and Computer Science University of California , Irvine, CA. 1998. (http://www ics. uci. edu/-mlearn/MLRepository, html).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部